TY - JOUR
T1 - High shear stress attenuates agonist-induced, glycoprotein IIb/IIIa-mediated platelet aggregation when von Willebrand factor binding to glycoprotein Ib/IX is blocked
AU - Iijima, Kaori
AU - Murata, Mitsuru
AU - Nakamura, Kosei
AU - Kitaguchi, Tetsuya
AU - Handa, Makoto
AU - Watanabe, Kiyoaki
AU - Fujimura, Yoshihiro
AU - Yoshioka, Akira
AU - Ikeda, Yasuo
PY - 1997/4/28
Y1 - 1997/4/28
N2 - High shear stress facilitates von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib/IX, causing activation of GPIIb/IIIa to induce platelet aggregation. Here we report that activated GPIIb/IIIa, even occupied by ligands, is not sufficient to mediate platelet aggregation under high shear stress conditions when vWF binding to GPIb/IX is blocked. Platelet rich plasma or washed platelet suspension supplemented with purified human fibrinogen at a concentration of 2 mg/mL were treated with an anti-vWF monoclonal antibody NMC-4 which blocks the binding of vWF to GPIb/IX. After addition of 10 μmol/L ADP, aggregation was continuously monitored under various shear stress conditions (0-108 dyne/cm2) using a cone-plate type aggregometer previously described. The extent of maximal aggregation of agonist-stimulated platelets in the presence of NMC-4 correlated inversely with the level of shear stress applied, with the virtual absence of aggregation at 108 dyne/cm2. Once aggregated by 10 μmol/L ADP under low shear stress (12 dyne/cm2), platelets could be disaggregated, in part, by the application of high shear stress (108 dyne/cm2), and reaggregated when shear stress was returned to 12 dyne/cm2. Flow cytometric analysis revealed that platelets stimulated with 10 μmol/L ADP at 108 dyne/cm2 bound fluorescein isothiocyanate (FITC)-labeled fibrinogen, although aggregation was absent in this experimental condition. These results demonstrate the dual effect of shear stress on platelet functions; a pro-aggregating activity that induces vWF-GPIb/IX interaction leading to platelet activation, and an anti-aggregating force to prevent the growth of platelet thrombi. It is suggested that the efficacy of vWF blockade is greater under high shear than low shear stress conditions, and that a selective inhibition of platelet functions can be possible.
AB - High shear stress facilitates von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib/IX, causing activation of GPIIb/IIIa to induce platelet aggregation. Here we report that activated GPIIb/IIIa, even occupied by ligands, is not sufficient to mediate platelet aggregation under high shear stress conditions when vWF binding to GPIb/IX is blocked. Platelet rich plasma or washed platelet suspension supplemented with purified human fibrinogen at a concentration of 2 mg/mL were treated with an anti-vWF monoclonal antibody NMC-4 which blocks the binding of vWF to GPIb/IX. After addition of 10 μmol/L ADP, aggregation was continuously monitored under various shear stress conditions (0-108 dyne/cm2) using a cone-plate type aggregometer previously described. The extent of maximal aggregation of agonist-stimulated platelets in the presence of NMC-4 correlated inversely with the level of shear stress applied, with the virtual absence of aggregation at 108 dyne/cm2. Once aggregated by 10 μmol/L ADP under low shear stress (12 dyne/cm2), platelets could be disaggregated, in part, by the application of high shear stress (108 dyne/cm2), and reaggregated when shear stress was returned to 12 dyne/cm2. Flow cytometric analysis revealed that platelets stimulated with 10 μmol/L ADP at 108 dyne/cm2 bound fluorescein isothiocyanate (FITC)-labeled fibrinogen, although aggregation was absent in this experimental condition. These results demonstrate the dual effect of shear stress on platelet functions; a pro-aggregating activity that induces vWF-GPIb/IX interaction leading to platelet activation, and an anti-aggregating force to prevent the growth of platelet thrombi. It is suggested that the efficacy of vWF blockade is greater under high shear than low shear stress conditions, and that a selective inhibition of platelet functions can be possible.
UR - http://www.scopus.com/inward/record.url?scp=18744438457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18744438457&partnerID=8YFLogxK
U2 - 10.1006/bbrc.1997.6554
DO - 10.1006/bbrc.1997.6554
M3 - Article
C2 - 9168936
AN - SCOPUS:18744438457
SN - 0006-291X
VL - 233
SP - 796
EP - 800
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 3
ER -