High-speed electroluminescence from semiconducting carbon nanotube films

Hidenori Takahashi, Yuji Suzuki, Norito Yoshida, Kenta Nakagawa, Hideyuki Maki

Research output: Contribution to journalArticlepeer-review

Abstract

High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with the silicon-based platforms because of the difficulty of their direct growth on a silicon substrate. Here, we report high-speed, ultra-small-size on-chip electroluminescence (EL) emitters based on semiconducting single-walled carbon nanotube (SWNT) thin films. The peaks of the EL emission spectra are about 0.15-eV redshifted from the peaks of the absorption and photoluminescence emission spectra, which probably suggest emission from trions. High-speed responses of ∼100 ps were experimentally observed from the EL emitters, which indicate the possibility of several-GHz modulation. The pulsed light generation was also obtained by applying the pulse voltage. These high-speed and ultra-small-size EL emitters can enable novel on-chip optoelectronic devices for highly integrated optoelectronics and silicon photonics.

Original languageEnglish
Article number164301
JournalJournal of Applied Physics
Volume127
Issue number16
DOIs
Publication statusPublished - 2020 Apr 30

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'High-speed electroluminescence from semiconducting carbon nanotube films'. Together they form a unique fingerprint.

Cite this