Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri

Keita Nishiyama, Ayaka Ochiai, Daigo Tsubokawa, Kazuhiko Ishihara, Yuji Yamamoto, Takao Mukai

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 66Histidine-fused EF-Tu (His6-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces.

Original languageEnglish
Article numbere83703
JournalPloS one
Volume8
Issue number12
DOIs
Publication statusPublished - 2013 Dec 31
Externally publishedYes

Fingerprint

Lactobacillus reuteri
Peptide Elongation Factor Tu
carbohydrate binding
mucins
binding proteins
Gastric Mucins
stomach
glycolipids
swine
Swine
carbohydrates
bacterial adhesion
Adhesion
adhesion
Carbohydrates
Bacterial Adhesion
surface plasmon resonance
diamines
arylsulfatase
saccharide-binding proteins

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri. / Nishiyama, Keita; Ochiai, Ayaka; Tsubokawa, Daigo; Ishihara, Kazuhiko; Yamamoto, Yuji; Mukai, Takao.

In: PloS one, Vol. 8, No. 12, e83703, 31.12.2013.

Research output: Contribution to journalArticle

Nishiyama, Keita ; Ochiai, Ayaka ; Tsubokawa, Daigo ; Ishihara, Kazuhiko ; Yamamoto, Yuji ; Mukai, Takao. / Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri. In: PloS one. 2013 ; Vol. 8, No. 12.
@article{c13854d7bcce4e91ab084f393d6a41e8,
title = "Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri",
abstract = "We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 66Histidine-fused EF-Tu (His6-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces.",
author = "Keita Nishiyama and Ayaka Ochiai and Daigo Tsubokawa and Kazuhiko Ishihara and Yuji Yamamoto and Takao Mukai",
year = "2013",
month = "12",
day = "31",
doi = "10.1371/journal.pone.0083703",
language = "English",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri

AU - Nishiyama, Keita

AU - Ochiai, Ayaka

AU - Tsubokawa, Daigo

AU - Ishihara, Kazuhiko

AU - Yamamoto, Yuji

AU - Mukai, Takao

PY - 2013/12/31

Y1 - 2013/12/31

N2 - We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 66Histidine-fused EF-Tu (His6-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces.

AB - We previously purified a putative sulfated-galactosylceramide (sulfatide)-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu). Adhesion properties were examined using 66Histidine-fused EF-Tu (His6-EF-Tu). Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM) by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces.

UR - http://www.scopus.com/inward/record.url?scp=84894252512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84894252512&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0083703

DO - 10.1371/journal.pone.0083703

M3 - Article

C2 - 24391811

AN - SCOPUS:84894252512

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e83703

ER -