Identification of a novel transmembrane domain involved in the negative modulation of mGluR1 using a newly discovered allosteric mGluR1 antagonist, 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one

Junko Fukuda, Gentaroh Suzuki, Toshifumi Kimura, Yasushi Nagatomi, Satoru Ito, Hiroshi Kawamoto, Satoshi Ozaki, Hisashi Ohta

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Currently tested allosteric modulators for metabotropic glutamate receptor 1 (mGluR1) are known to regulate the activity of mGluR1 mainly through transmembrane (TM) domain 6 and/or 7. We identified a novel interaction site, N760 in TM5, which negatively regulates activation of mGluR1 with a newly discovered selective mGluR1 antagonist, 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one (CFMMC). CFMMC inhibited l-glutamate-induced intracellular Ca2+ mobilization ([Ca2+]i) in Chinese hamster ovary (CHO) cells expressing recombinant human mGluR1a with IC50 value of 50 nM, whereas it did not inhibit [Ca2+]i in CHO cells expressing human mGluR5a (IC50; >10 μM). To identify the amino acid residues critical for antagonism of CFMMC, we constructed various point mutants of human mGluR1 and evaluated them in [Ca2+]i assays. The inhibitory effects of CFMMC were significantly affected in point mutations of either I725 in TM4 or N760 in TM5, as well as mutations of W798, F801 and Y805 in TM6 or T815 in TM7. Further studies revealed that antagonistic activities of not only CFMMC but also other, structurally unrelated, mGluR1 antagonists such as 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-carboxamide (YM-298198) and Compound 1 were reduced in N760 mutated mGluR1a. These results indicate that some mGluR1 allosteric antagonists require N760 in TM5 to demonstrate negative modulation of mGluR1 in addition to the reported amino acid residues in TM6 and TM7.

Original languageEnglish
Pages (from-to)438-445
Number of pages8
JournalNeuropharmacology
Volume57
Issue number4
DOIs
Publication statusPublished - 2009 Sep
Externally publishedYes

Keywords

  • mGluR1 receptor antagonist
  • Point mutagenesis
  • Selective

ASJC Scopus subject areas

  • Pharmacology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Identification of a novel transmembrane domain involved in the negative modulation of mGluR1 using a newly discovered allosteric mGluR1 antagonist, 3-cyclohexyl-5-fluoro-6-methyl-7-(2-morpholin-4-ylethoxy)-4H-chromen-4-one'. Together they form a unique fingerprint.

Cite this