Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions

Taichi Nakamura, Kai Fukami, Koji Fukagata

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Neural networks (NNs) and linear stochastic estimation (LSE) have widely been utilized as powerful tools for fluid-flow regressions. We investigate fundamental differences between them considering two canonical fluid-flow problems: (1) the estimation of high-order proper orthogonal decomposition coefficients from low-order their counterparts for a flow around a two-dimensional cylinder, and (2) the state estimation from wall characteristics in a turbulent channel flow. In the first problem, we compare the performance of LSE to that of a multi-layer perceptron (MLP). With the channel flow example, we capitalize on a convolutional neural network (CNN) as a nonlinear model which can handle high-dimensional fluid flows. For both cases, the nonlinear NNs outperform the linear methods thanks to nonlinear activation functions. We also perform error-curve analyses regarding the estimation error and the response of weights inside models. Our analysis visualizes the robustness against noisy perturbation on the error-curve domain while revealing the fundamental difference of the covered tools for fluid-flow regressions.

Original languageEnglish
Article number3726
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - 2022 Dec

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions'. Together they form a unique fingerprint.

Cite this