Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3

Ma Tonghui, Mariko Chikuma, Rachid Sougrat, Jean Marc Verbavatz, A. S. Verkman

Research output: Contribution to journalArticle

175 Citations (Scopus)

Abstract

The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a >4-fold reduced osmotic water permeability and >2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 ± 10 versus 269 ± 12 microsiemens (μS), p < 0.001), as well as in a CD1 genetic background (209 ± 21 versus 469 ± 11 μS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90-100 μS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 ± 13 versus 441 ± 34 μS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.

Original languageEnglish
Pages (from-to)17147-17153
Number of pages7
JournalJournal of Biological Chemistry
Volume277
Issue number19
DOIs
Publication statusPublished - 2002 May 10
Externally publishedYes

Fingerprint

Aquaporin 3
Aquaporins
Hydration
Cornea
Water
Skin
Atmosphere
Epidermis
Water content
Permeability
Moisture
Skin Physiological Phenomena
Hairless Mouse
Physiology
Cell membranes

ASJC Scopus subject areas

  • Biochemistry

Cite this

Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. / Tonghui, Ma; Chikuma, Mariko; Sougrat, Rachid; Verbavatz, Jean Marc; Verkman, A. S.

In: Journal of Biological Chemistry, Vol. 277, No. 19, 10.05.2002, p. 17147-17153.

Research output: Contribution to journalArticle

Tonghui, Ma ; Chikuma, Mariko ; Sougrat, Rachid ; Verbavatz, Jean Marc ; Verkman, A. S. / Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. In: Journal of Biological Chemistry. 2002 ; Vol. 277, No. 19. pp. 17147-17153.
@article{72f394160f4d467d902d1521f56542a6,
title = "Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3",
abstract = "The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a >4-fold reduced osmotic water permeability and >2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 ± 10 versus 269 ± 12 microsiemens (μS), p < 0.001), as well as in a CD1 genetic background (209 ± 21 versus 469 ± 11 μS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90-100 μS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 ± 13 versus 441 ± 34 μS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.",
author = "Ma Tonghui and Mariko Chikuma and Rachid Sougrat and Verbavatz, {Jean Marc} and Verkman, {A. S.}",
year = "2002",
month = "5",
day = "10",
doi = "10.1074/jbc.M200925200",
language = "English",
volume = "277",
pages = "17147--17153",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "19",

}

TY - JOUR

T1 - Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3

AU - Tonghui, Ma

AU - Chikuma, Mariko

AU - Sougrat, Rachid

AU - Verbavatz, Jean Marc

AU - Verkman, A. S.

PY - 2002/5/10

Y1 - 2002/5/10

N2 - The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a >4-fold reduced osmotic water permeability and >2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 ± 10 versus 269 ± 12 microsiemens (μS), p < 0.001), as well as in a CD1 genetic background (209 ± 21 versus 469 ± 11 μS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90-100 μS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 ± 13 versus 441 ± 34 μS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.

AB - The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a >4-fold reduced osmotic water permeability and >2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 ± 10 versus 269 ± 12 microsiemens (μS), p < 0.001), as well as in a CD1 genetic background (209 ± 21 versus 469 ± 11 μS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90-100 μS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 ± 13 versus 441 ± 34 μS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.

UR - http://www.scopus.com/inward/record.url?scp=0037053303&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037053303&partnerID=8YFLogxK

U2 - 10.1074/jbc.M200925200

DO - 10.1074/jbc.M200925200

M3 - Article

C2 - 11880378

AN - SCOPUS:0037053303

VL - 277

SP - 17147

EP - 17153

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 19

ER -