TY - JOUR
T1 - Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure
AU - Kumagai, Hiroo
AU - Oshima, Naoki
AU - Matsuura, Tomokazu
AU - Iigaya, Kamon
AU - Imai, Masaki
AU - Onimaru, Hiroshi
AU - Sakata, Katsufumi
AU - Osaka, Motohisa
AU - Onami, Toshiko
AU - Takimoto, Chie
AU - Kamayachi, Tadashi
AU - Itoh, Hiroshi
AU - Saruta, Takao
PY - 2012/2
Y1 - 2012/2
N2 - Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy.
AB - Accentuated sympathetic nerve activity (SNA) is a risk factor for cardiovascular events. In this review, we investigate our working hypothesis that potentiated activity of neurons in the rostral ventrolateral medulla (RVLM) is the primary cause of experimental and essential hypertension. Over the past decade, we have examined how RVLM neurons regulate peripheral SNA, how the sympathetic and renin-angiotensin systems are correlated and how the sympathetic system can be suppressed to prevent cardiovascular events in patients. Based on results of whole-cell patch-clamp studies, we report that angiotensin II (Ang II) potentiated the activity of RVLM neurons, a sympathetic nervous center, whereas Ang II receptor blocker (ARB) reduced RVLM activities. Our optical imaging demonstrated that a longitudinal rostrocaudal column, including the RVLM and the caudal end of ventrolateral medulla, acts as a sympathetic center. By organizing and analyzing these data, we hope to develop therapies for reducing SNA in our patients. Recently, 2-year depressor effects were obtained by a single procedure of renal nerve ablation in patients with essential hypertension. The ablation injured not only the efferent renal sympathetic nerves but also the afferent renal nerves and led to reduced activities of the hypothalamus, RVLM neurons and efferent systemic sympathetic nerves. These clinical results stress the importance of the RVLM neurons in blood pressure regulation. We expect renal nerve ablation to be an effective treatment for congestive heart failure and chronic kidney disease, such as diabetic nephropathy.
KW - RVLM neurons
KW - congenic rat
KW - optical imaging
KW - patch-clamp technique
KW - sympathetic nervous system
UR - http://www.scopus.com/inward/record.url?scp=84856706324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856706324&partnerID=8YFLogxK
U2 - 10.1038/hr.2011.208
DO - 10.1038/hr.2011.208
M3 - Review article
C2 - 22170390
AN - SCOPUS:84856706324
SN - 0916-9636
VL - 35
SP - 132
EP - 141
JO - Hypertension Research
JF - Hypertension Research
IS - 2
ER -