Incompressible limit and the initial layer of the compressible Euler equation in R+n

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

We consider the incompressible limit of the compressible Euler equation in the half-space R+n. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data υ0 do not satisfy the condition `▽·v0 = 0', then the initial layer will appear.

Original languageEnglish
Pages (from-to)945-958
Number of pages14
JournalMathematical Methods in the Applied Sciences
Volume20
Issue number1
Publication statusPublished - 1997 Jan 1
Externally publishedYes

Fingerprint

Incompressible Limit
Compressible Euler Equations
Euler equations
Incompressible Euler Equations
Half-space
Tend
Converge
Mach number
Zero

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Incompressible limit and the initial layer of the compressible Euler equation in R+n. / Iguchi, Tatsuo.

In: Mathematical Methods in the Applied Sciences, Vol. 20, No. 1, 01.01.1997, p. 945-958.

Research output: Contribution to journalArticle

@article{b831434f155141b9ad85e78ebecb775c,
title = "Incompressible limit and the initial layer of the compressible Euler equation in R+n",
abstract = "We consider the incompressible limit of the compressible Euler equation in the half-space R+n. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data υ0∞ do not satisfy the condition `▽·v0∞ = 0', then the initial layer will appear.",
author = "Tatsuo Iguchi",
year = "1997",
month = "1",
day = "1",
language = "English",
volume = "20",
pages = "945--958",
journal = "Mathematical Methods in the Applied Sciences",
issn = "0170-4214",
publisher = "John Wiley and Sons Ltd",
number = "1",

}

TY - JOUR

T1 - Incompressible limit and the initial layer of the compressible Euler equation in R+n

AU - Iguchi, Tatsuo

PY - 1997/1/1

Y1 - 1997/1/1

N2 - We consider the incompressible limit of the compressible Euler equation in the half-space R+n. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data υ0∞ do not satisfy the condition `▽·v0∞ = 0', then the initial layer will appear.

AB - We consider the incompressible limit of the compressible Euler equation in the half-space R+n. It is proved that the solutions of the non-dimensionalized compressible Euler equation converge to the solution of the incompressible Euler equation when the Mach number tends to zero. If the initial data υ0∞ do not satisfy the condition `▽·v0∞ = 0', then the initial layer will appear.

UR - http://www.scopus.com/inward/record.url?scp=0031190635&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031190635&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031190635

VL - 20

SP - 945

EP - 958

JO - Mathematical Methods in the Applied Sciences

JF - Mathematical Methods in the Applied Sciences

SN - 0170-4214

IS - 1

ER -