Increasing surface-enhanced Raman scattering density using gold-coated magnetic nanoparticles controlled via a magnetic field for sensitive and efficient biomarker detection

Kazuki Shibusawa, Takumi Hase, Kosuke Tsukada

Research output: Contribution to journalArticle

Abstract

Early detection of various diseases is expected using surface-enhanced Raman scattering (SERS). For example, a method of labeling an antibody of a disease-related molecule on metal nanoparticles and detecting the SERS signals of the particles bound to the antigen is a promising approach. However, the problems of a slow antigen-antibody reaction and low sensitivity remain unsolved. In this study, we fabricated nanoparticles that can be freely moved using an external magnetic field for rapid antigen-antibody reaction and also nanoengineered the substrate to increase the density of hotspots required for SERS. Gold-coated magnetic nanoparticles (Au-MNPs) with a core-shell structure were prepared by applying multiple coatings of gold onto magnetic iron(II,III) oxide nanoparticles, which were used as the core. A neodymium magnet easily moved and converged the Au-MNPs in the solution within a few seconds. In addition, a silver nanoparticle substrate (Ag-NS) with a hexagonal close-packed structure fixed on a polydimethylsiloxane thin film was prepared, and the stable generation of SERS was confirmed over the entire substrate. Upon aggregation of the Au-MNPs onto Ag-NS using a neodymium magnet, the total SERS strength per unit area drastically increased, suggesting that the combination of Au-MNPs and Ag-NS increased the density of the generated hotspots. In future work, with the labeling of antibodies onto Au-MNPs, we expect the proposed method to be applied in the sensitive measurement of biomarkers associated with diseases.

Original languageEnglish
Article number065316
JournalAIP Advances
Volume9
Issue number6
DOIs
Publication statusPublished - 2019 Jun 1

Fingerprint

biomarkers
antibodies
Raman spectra
gold
antigens
nanoparticles
magnetic fields
neodymium
marking
magnets
silver
coatings
iron
oxides
sensitivity
thin films
metals
molecules

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

@article{d6b2ecd209ae44f3afbe27641a4b01f0,
title = "Increasing surface-enhanced Raman scattering density using gold-coated magnetic nanoparticles controlled via a magnetic field for sensitive and efficient biomarker detection",
abstract = "Early detection of various diseases is expected using surface-enhanced Raman scattering (SERS). For example, a method of labeling an antibody of a disease-related molecule on metal nanoparticles and detecting the SERS signals of the particles bound to the antigen is a promising approach. However, the problems of a slow antigen-antibody reaction and low sensitivity remain unsolved. In this study, we fabricated nanoparticles that can be freely moved using an external magnetic field for rapid antigen-antibody reaction and also nanoengineered the substrate to increase the density of hotspots required for SERS. Gold-coated magnetic nanoparticles (Au-MNPs) with a core-shell structure were prepared by applying multiple coatings of gold onto magnetic iron(II,III) oxide nanoparticles, which were used as the core. A neodymium magnet easily moved and converged the Au-MNPs in the solution within a few seconds. In addition, a silver nanoparticle substrate (Ag-NS) with a hexagonal close-packed structure fixed on a polydimethylsiloxane thin film was prepared, and the stable generation of SERS was confirmed over the entire substrate. Upon aggregation of the Au-MNPs onto Ag-NS using a neodymium magnet, the total SERS strength per unit area drastically increased, suggesting that the combination of Au-MNPs and Ag-NS increased the density of the generated hotspots. In future work, with the labeling of antibodies onto Au-MNPs, we expect the proposed method to be applied in the sensitive measurement of biomarkers associated with diseases.",
author = "Kazuki Shibusawa and Takumi Hase and Kosuke Tsukada",
year = "2019",
month = "6",
day = "1",
doi = "10.1063/1.5102083",
language = "English",
volume = "9",
journal = "AIP Advances",
issn = "2158-3226",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Increasing surface-enhanced Raman scattering density using gold-coated magnetic nanoparticles controlled via a magnetic field for sensitive and efficient biomarker detection

AU - Shibusawa, Kazuki

AU - Hase, Takumi

AU - Tsukada, Kosuke

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Early detection of various diseases is expected using surface-enhanced Raman scattering (SERS). For example, a method of labeling an antibody of a disease-related molecule on metal nanoparticles and detecting the SERS signals of the particles bound to the antigen is a promising approach. However, the problems of a slow antigen-antibody reaction and low sensitivity remain unsolved. In this study, we fabricated nanoparticles that can be freely moved using an external magnetic field for rapid antigen-antibody reaction and also nanoengineered the substrate to increase the density of hotspots required for SERS. Gold-coated magnetic nanoparticles (Au-MNPs) with a core-shell structure were prepared by applying multiple coatings of gold onto magnetic iron(II,III) oxide nanoparticles, which were used as the core. A neodymium magnet easily moved and converged the Au-MNPs in the solution within a few seconds. In addition, a silver nanoparticle substrate (Ag-NS) with a hexagonal close-packed structure fixed on a polydimethylsiloxane thin film was prepared, and the stable generation of SERS was confirmed over the entire substrate. Upon aggregation of the Au-MNPs onto Ag-NS using a neodymium magnet, the total SERS strength per unit area drastically increased, suggesting that the combination of Au-MNPs and Ag-NS increased the density of the generated hotspots. In future work, with the labeling of antibodies onto Au-MNPs, we expect the proposed method to be applied in the sensitive measurement of biomarkers associated with diseases.

AB - Early detection of various diseases is expected using surface-enhanced Raman scattering (SERS). For example, a method of labeling an antibody of a disease-related molecule on metal nanoparticles and detecting the SERS signals of the particles bound to the antigen is a promising approach. However, the problems of a slow antigen-antibody reaction and low sensitivity remain unsolved. In this study, we fabricated nanoparticles that can be freely moved using an external magnetic field for rapid antigen-antibody reaction and also nanoengineered the substrate to increase the density of hotspots required for SERS. Gold-coated magnetic nanoparticles (Au-MNPs) with a core-shell structure were prepared by applying multiple coatings of gold onto magnetic iron(II,III) oxide nanoparticles, which were used as the core. A neodymium magnet easily moved and converged the Au-MNPs in the solution within a few seconds. In addition, a silver nanoparticle substrate (Ag-NS) with a hexagonal close-packed structure fixed on a polydimethylsiloxane thin film was prepared, and the stable generation of SERS was confirmed over the entire substrate. Upon aggregation of the Au-MNPs onto Ag-NS using a neodymium magnet, the total SERS strength per unit area drastically increased, suggesting that the combination of Au-MNPs and Ag-NS increased the density of the generated hotspots. In future work, with the labeling of antibodies onto Au-MNPs, we expect the proposed method to be applied in the sensitive measurement of biomarkers associated with diseases.

UR - http://www.scopus.com/inward/record.url?scp=85067834403&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067834403&partnerID=8YFLogxK

U2 - 10.1063/1.5102083

DO - 10.1063/1.5102083

M3 - Article

AN - SCOPUS:85067834403

VL - 9

JO - AIP Advances

JF - AIP Advances

SN - 2158-3226

IS - 6

M1 - 065316

ER -