TY - JOUR
T1 - Infection of human alveolar macrophages by human coronavirus strain 229E
AU - Joel Funk, C.
AU - Wang, Jieru
AU - Ito, Yoko
AU - Travanty, Emily A.
AU - Voelker, Dennis R.
AU - Holmes, Kathryn V.
AU - Mason, Robert J.
PY - 2012/3
Y1 - 2012/3
N2 - Human coronavirus strain 229E (HCoV-229E) commonly causes upper respiratory tract infections. However, lower respiratory tract infections can occur in some individuals, indicating that cells in the distal lung are susceptible to HCoV-229E. This study determined the virus susceptibility of primary cultures of human alveolar epithelial cells and alveolar macrophages (AMs). Fluorescent antibody staining indicated that HCoV-229E could readily infect AMs, but no evidence was found for infection in differentiated alveolar epithelial type II cells and only a very low level of infection in type II cells transitioning to the type I-like cell phenotype. However, a human bronchial epithelial cell line (16HBE) was readily infected. The innate immune response of AMs to HCoV-229E infection was evaluated for cytokine production and interferon (IFN) gene expression. AMs secreted significant amounts of tumour necrosis factor alpha (TNF-a), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and macrophage inflammatory protein 1b (MIP-1b/CCL4) in response to HCoV-229E infection, but these cells exhibited no detectable increase in IFN-b or interleukin-29 in mRNA levels. AMs from smokers had reduced secretion of TNF-a compared with non-smokers in response to HCoV-229E infection. Surfactant protein A (SP-A) and SP-D are part of the innate immune system in the distal lung. Both surfactant proteins bound to HCoV-229E, and pre-treatment of HCoV-229E with SP-A or SP-D inhibited infection of 16HBE cells. In contrast, there was a modest reduction in infection in AMs by SP-A, but not by SP-D. In summary, AMs are an important target for HCoV-229E, and they can mount a pro-inflammatory innate immune response to infection.
AB - Human coronavirus strain 229E (HCoV-229E) commonly causes upper respiratory tract infections. However, lower respiratory tract infections can occur in some individuals, indicating that cells in the distal lung are susceptible to HCoV-229E. This study determined the virus susceptibility of primary cultures of human alveolar epithelial cells and alveolar macrophages (AMs). Fluorescent antibody staining indicated that HCoV-229E could readily infect AMs, but no evidence was found for infection in differentiated alveolar epithelial type II cells and only a very low level of infection in type II cells transitioning to the type I-like cell phenotype. However, a human bronchial epithelial cell line (16HBE) was readily infected. The innate immune response of AMs to HCoV-229E infection was evaluated for cytokine production and interferon (IFN) gene expression. AMs secreted significant amounts of tumour necrosis factor alpha (TNF-a), regulated on activation normal T-cell expressed and secreted (RANTES/CCL5) and macrophage inflammatory protein 1b (MIP-1b/CCL4) in response to HCoV-229E infection, but these cells exhibited no detectable increase in IFN-b or interleukin-29 in mRNA levels. AMs from smokers had reduced secretion of TNF-a compared with non-smokers in response to HCoV-229E infection. Surfactant protein A (SP-A) and SP-D are part of the innate immune system in the distal lung. Both surfactant proteins bound to HCoV-229E, and pre-treatment of HCoV-229E with SP-A or SP-D inhibited infection of 16HBE cells. In contrast, there was a modest reduction in infection in AMs by SP-A, but not by SP-D. In summary, AMs are an important target for HCoV-229E, and they can mount a pro-inflammatory innate immune response to infection.
UR - http://www.scopus.com/inward/record.url?scp=84863180709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863180709&partnerID=8YFLogxK
U2 - 10.1099/vir.0.038414-0
DO - 10.1099/vir.0.038414-0
M3 - Article
C2 - 22090214
AN - SCOPUS:84863180709
SN - 0022-1317
VL - 93
SP - 494
EP - 503
JO - Journal of General Virology
JF - Journal of General Virology
IS - 3
ER -