TY - JOUR
T1 - Influence of crystal anisotropy on subsurface damage in ultra-precision cylindrical turning of CaF2
AU - Mizumoto, Yuta
AU - Kangawa, Hiroi
AU - Itobe, Hiroki
AU - Tanabe, Takasumi
AU - Kakinuma, Yasuhiro
PY - 2017/7
Y1 - 2017/7
N2 - An optical microcavity, which stores light at a certain spot, is an essential component to realize all-optical signal processing. Single-crystal calcium fluoride (CaF2) theoretically shows a high Q-factor which is a desirable optical property. The CaF2 microcavity can only be manufactured by ultra-precision cylindrical turning (UPCT). The authors have studied UPCT of CaF2 and shown the influence of crystal anisotropy and tool geometry on surface roughness and subsurface damage. The study indicated that a smaller nose radius of the cutting tool led to shallower subsurface damage. Thus, it is inferred that a smaller nose radius compared to the previous nose radius (0.05 mm) can further reduce subsurface damage. Nevertheless, the mechanism that causes a difference in subsurface damage due to crystal anisotropy is not sufficiently clear. The influence of subsurface damage on microcavity performance is still unclear. In this study, the UPCT of CaF2 was conducted using a tool with a nose radius of 0.01 mm. The subsurface damage was investigated by transmission electron microscope (TEM) observation from the viewpoint of the change in crystal lattice arrangement. In our previous study, fast Fourier transfer (FFT) analysis was used for confirmation of change of crystal structure. In this study, FFT analysis was also used to quantitatively evaluate the depth of subsurface damage. In addition, inverse fast Fourier transfer (IFFT) was used to analyze change of crystal lattice arrangement clearly, which enables discussion of the influence of slip systems. Finally, optical microcavities are manufactured without any crack, and the influence of subsurface damage on microcavity performance is experimentally evaluated using a wavelength tunable laser and power meter.
AB - An optical microcavity, which stores light at a certain spot, is an essential component to realize all-optical signal processing. Single-crystal calcium fluoride (CaF2) theoretically shows a high Q-factor which is a desirable optical property. The CaF2 microcavity can only be manufactured by ultra-precision cylindrical turning (UPCT). The authors have studied UPCT of CaF2 and shown the influence of crystal anisotropy and tool geometry on surface roughness and subsurface damage. The study indicated that a smaller nose radius of the cutting tool led to shallower subsurface damage. Thus, it is inferred that a smaller nose radius compared to the previous nose radius (0.05 mm) can further reduce subsurface damage. Nevertheless, the mechanism that causes a difference in subsurface damage due to crystal anisotropy is not sufficiently clear. The influence of subsurface damage on microcavity performance is still unclear. In this study, the UPCT of CaF2 was conducted using a tool with a nose radius of 0.01 mm. The subsurface damage was investigated by transmission electron microscope (TEM) observation from the viewpoint of the change in crystal lattice arrangement. In our previous study, fast Fourier transfer (FFT) analysis was used for confirmation of change of crystal structure. In this study, FFT analysis was also used to quantitatively evaluate the depth of subsurface damage. In addition, inverse fast Fourier transfer (IFFT) was used to analyze change of crystal lattice arrangement clearly, which enables discussion of the influence of slip systems. Finally, optical microcavities are manufactured without any crack, and the influence of subsurface damage on microcavity performance is experimentally evaluated using a wavelength tunable laser and power meter.
KW - Crystal anisotropy
KW - Optical microcavity
KW - Single-crystal CaF
KW - Subsurface damage
KW - Ultra-precision cylindrical turning
UR - http://www.scopus.com/inward/record.url?scp=85011559309&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011559309&partnerID=8YFLogxK
U2 - 10.1016/j.precisioneng.2017.01.017
DO - 10.1016/j.precisioneng.2017.01.017
M3 - Article
AN - SCOPUS:85011559309
SN - 0141-6359
VL - 49
SP - 104
EP - 114
JO - Precision Engineering
JF - Precision Engineering
ER -