Interpolation of multiple zeta and zeta-star values

Shuji Yamamoto

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

We define polynomials of one variable t whose values at t = 0 and 1 are the multiple zeta values and the multiple zeta-star values, respectively. We give an application to the two-one conjecture of Ohno-Zudilin, and also prove the sum formula and the cyclic sum formula for these polynomials.

Original languageEnglish
Pages (from-to)102-114
Number of pages13
JournalJournal of Algebra
Volume385
DOIs
Publication statusPublished - 2013 Jul 1

Fingerprint

Sum formula
Star
Interpolate
Multiple zeta Values
Polynomial

Keywords

  • Cyclic sum formula
  • Multiple zeta values
  • Multiple zeta-star values
  • Sum formula
  • Two-one conjecture

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Interpolation of multiple zeta and zeta-star values. / Yamamoto, Shuji.

In: Journal of Algebra, Vol. 385, 01.07.2013, p. 102-114.

Research output: Contribution to journalArticle

Yamamoto, Shuji. / Interpolation of multiple zeta and zeta-star values. In: Journal of Algebra. 2013 ; Vol. 385. pp. 102-114.
@article{5616112e8c4b46c99900b78ed7a8a613,
title = "Interpolation of multiple zeta and zeta-star values",
abstract = "We define polynomials of one variable t whose values at t = 0 and 1 are the multiple zeta values and the multiple zeta-star values, respectively. We give an application to the two-one conjecture of Ohno-Zudilin, and also prove the sum formula and the cyclic sum formula for these polynomials.",
keywords = "Cyclic sum formula, Multiple zeta values, Multiple zeta-star values, Sum formula, Two-one conjecture",
author = "Shuji Yamamoto",
year = "2013",
month = "7",
day = "1",
doi = "10.1016/j.jalgebra.2013.03.023",
language = "English",
volume = "385",
pages = "102--114",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Interpolation of multiple zeta and zeta-star values

AU - Yamamoto, Shuji

PY - 2013/7/1

Y1 - 2013/7/1

N2 - We define polynomials of one variable t whose values at t = 0 and 1 are the multiple zeta values and the multiple zeta-star values, respectively. We give an application to the two-one conjecture of Ohno-Zudilin, and also prove the sum formula and the cyclic sum formula for these polynomials.

AB - We define polynomials of one variable t whose values at t = 0 and 1 are the multiple zeta values and the multiple zeta-star values, respectively. We give an application to the two-one conjecture of Ohno-Zudilin, and also prove the sum formula and the cyclic sum formula for these polynomials.

KW - Cyclic sum formula

KW - Multiple zeta values

KW - Multiple zeta-star values

KW - Sum formula

KW - Two-one conjecture

UR - http://www.scopus.com/inward/record.url?scp=84876475543&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84876475543&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2013.03.023

DO - 10.1016/j.jalgebra.2013.03.023

M3 - Article

VL - 385

SP - 102

EP - 114

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -