Interpretation of semiclassical transition moments through wave function expansion of dipole moment functions with applications to the OH stretching spectra of simple acids and alcohols

Hirokazu Takahashi, Kaito Takahashi, Satoshi Yabushita

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace coordinate in both the CP and the quantum mechanical frameworks and discuss the methodological dependence of the calculated transition moments. As a byproduct, we have found a simple derivation of the DMF expression first derived by Timm and Mecke long time ago.

Original languageEnglish
Pages (from-to)4834-4845
Number of pages12
JournalJournal of Physical Chemistry A
Volume119
Issue number20
DOIs
Publication statusPublished - 2015 May 21

Fingerprint

Dipole moment
Wave functions
Stretching
dipole moments
alcohols
Alcohols
wave functions
moments
acids
Acids
expansion
approximation
quotients
Quantum theory
trigonometric functions
harmonics
Molecular vibrations
Wentzel-Kramer-Brillouin method
quantum theory
quantum numbers

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

@article{28956261a84c48538624badd0b67f282,
title = "Interpretation of semiclassical transition moments through wave function expansion of dipole moment functions with applications to the OH stretching spectra of simple acids and alcohols",
abstract = "Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace coordinate in both the CP and the quantum mechanical frameworks and discuss the methodological dependence of the calculated transition moments. As a byproduct, we have found a simple derivation of the DMF expression first derived by Timm and Mecke long time ago.",
author = "Hirokazu Takahashi and Kaito Takahashi and Satoshi Yabushita",
year = "2015",
month = "5",
day = "21",
doi = "10.1021/acs.jpca.5b02050",
language = "English",
volume = "119",
pages = "4834--4845",
journal = "Journal of Physical Chemistry A",
issn = "1089-5639",
publisher = "American Chemical Society",
number = "20",

}

TY - JOUR

T1 - Interpretation of semiclassical transition moments through wave function expansion of dipole moment functions with applications to the OH stretching spectra of simple acids and alcohols

AU - Takahashi, Hirokazu

AU - Takahashi, Kaito

AU - Yabushita, Satoshi

PY - 2015/5/21

Y1 - 2015/5/21

N2 - Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace coordinate in both the CP and the quantum mechanical frameworks and discuss the methodological dependence of the calculated transition moments. As a byproduct, we have found a simple derivation of the DMF expression first derived by Timm and Mecke long time ago.

AB - Semiclassical description of molecular vibrations has provided us with various computational approximations and enhanced our conceptual understanding of quantum mechanics. In this study, the transition moments of the OH stretching fundamental and overtone intensities (Δv = 1-6) of some alcohols and acids are calculated by three kinds of semiclassical methods, correspondence-principle (CP) approximation, quasiclassical approximation, and uniform WKB approximation, and their respective transition moments are compared to those by the quantum theory. On the basis of the local mode picture, the one-dimensional potential energy curves and the dipole moment functions (DMFs) were obtained by density functional theory calculations and then fitted to Morse functions and sixth-order polynomials, respectively. It was shown that both the transition energies and the absorption intensities derived in the semiclassical methods reproduced their respective quantum values. In particular, the CP approximation reproduces the quantum transition moments if the formula given by Naccache is used for the action integral value. On the basis of these semiclassical results, we present a picture to understand the small variance in the overtone intensities of these acids and alcohols. Another important result is the ratios of semiclassical-to-quantum transition moment are almost independent of the applied molecules even with a great molecular variance of the DMFs, and they depend only on the nature of the semiclassical approximations and the quantum number. The difference between the semiclassical and quantum transition moments was analyzed in terms of a hitherto unrecognized concept that the Fourier expansion of the time dependent DMF in the CP treatment is a kind of the wave function expansion method using trigonometric functions as the quotient functions. For a Morse oscillator, we derive the analytic and approximate expressions of the quotient functions in terms of the bond displace coordinate in both the CP and the quantum mechanical frameworks and discuss the methodological dependence of the calculated transition moments. As a byproduct, we have found a simple derivation of the DMF expression first derived by Timm and Mecke long time ago.

UR - http://www.scopus.com/inward/record.url?scp=84930193159&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84930193159&partnerID=8YFLogxK

U2 - 10.1021/acs.jpca.5b02050

DO - 10.1021/acs.jpca.5b02050

M3 - Article

VL - 119

SP - 4834

EP - 4845

JO - Journal of Physical Chemistry A

JF - Journal of Physical Chemistry A

SN - 1089-5639

IS - 20

ER -