Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+CD4+ T cells

Ryutaro Iwabuchi, Shota Ikeno, Mie Kobayashi-Ishihara, Haruko Takeyama, Manabu Ato, Yasuko Tsunetsugu-Yokota, Kazutaka Terahara

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Two cytokines, fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are considered to be the essential regulators of dendritic cell (DC) development in vivo. However, the combined effect of Flt3-L and GM-CSF on human DCs has not been evaluated in vivo. In this study, we, therefore, aimed at evaluating this using a humanized mouse model. Humanized non-obese diabetic/SCID/Jak3null (hNOJ) mice were constructed by transplanting hematopoietic stem cells from human umbilical cord blood into newborn NOJ mice, and in vivo transfection (IVT) was performed by hydrodynamic injection-mediated gene delivery using plasmids encoding human Flt3-L and GM-CSF. Following IVT, Flt3-L and GM-CSF were successfully induced in hNOJ mice. At 10 days post-IVT, we found, in the spleen, that treatment with both Flt3-L and GM-CSF enhanced the reconstitution of two myeloid DC subsets, CD14-CD1c+ conventional DCs (cDCs) and CD14-CD141+ cDCs, in addition to CD14+ monocyte-like cells expressing CD1c and/or CD141. GM-CSF alone had less effect on the reconstitution of these myeloid cell populations. By contrast, none of the cytokine treatments enhanced CD123+ plasmacytoid DC (pDC) reconstitution. Regardless of the reconstitution levels, three cell populations (CD1c+ myeloid cells, CD141+ myeloid cells, and pDCs) could be matured by treatment with cytokines, in terms of upregulation of CD40, CD80, CD86, and CD184/CXCR4 and downregulation of CD195/CCR5. In particular, GM-CSF contributed to upregulation of CD80 in all these cell populations. Interestingly, we further observed that Foxp3+ cells within splenic CD4+ T cells were significantly increased in the presence of GM-CSF. Foxp3+ T cells could be subdivided into two subpopulations, CD45RA-Foxp3hi and CD45RA-Foxp3lo T cells. Whereas CD45RA-Foxp3hi T cells were increased only after treatment with GM-CSF alone, CD45RA-Foxp3lo T cells were increased only after treatment with both Flt3-L and GM-CSF. Treatment with Flt3-L alone had no effect on the number of Foxp3+ T cells. The correlation analysis demonstrated that the development of these Foxp3+ subpopulations was associated with the maturation status of DC(-like) cells. Taken together, this study provides a platform for studying the in vivo effect of Flt3-L and GM-CSF on human DCs and regulatory T cells.

Original languageEnglish
Article number1042
JournalFrontiers in Immunology
Volume9
Issue numberMAY
DOIs
Publication statusPublished - 2018 May 28
Externally publishedYes

Fingerprint

Myeloid Cells
Granulocyte-Macrophage Colony-Stimulating Factor
Protein-Tyrosine Kinases
Dendritic Cells
Ligands
T-Lymphocytes
Transfection
SCID Mice
Cytokines
Up-Regulation
Therapeutics
Population
Regulatory T-Lymphocytes
Hydrodynamics
Hematopoietic Stem Cells
Fetal Blood
Monocytes
Plasmids
Down-Regulation
Spleen

Keywords

  • Cytokines
  • Dendritic cells
  • Flt3-L
  • Foxp3
  • GM-CSF
  • Humanized mice
  • T cells

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this

Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+CD4+ T cells. / Iwabuchi, Ryutaro; Ikeno, Shota; Kobayashi-Ishihara, Mie; Takeyama, Haruko; Ato, Manabu; Tsunetsugu-Yokota, Yasuko; Terahara, Kazutaka.

In: Frontiers in Immunology, Vol. 9, No. MAY, 1042, 28.05.2018.

Research output: Contribution to journalArticle

Iwabuchi, Ryutaro ; Ikeno, Shota ; Kobayashi-Ishihara, Mie ; Takeyama, Haruko ; Ato, Manabu ; Tsunetsugu-Yokota, Yasuko ; Terahara, Kazutaka. / Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+CD4+ T cells. In: Frontiers in Immunology. 2018 ; Vol. 9, No. MAY.
@article{154f891be14d4867aa6db95de8ddb405,
title = "Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+CD4+ T cells",
abstract = "Two cytokines, fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are considered to be the essential regulators of dendritic cell (DC) development in vivo. However, the combined effect of Flt3-L and GM-CSF on human DCs has not been evaluated in vivo. In this study, we, therefore, aimed at evaluating this using a humanized mouse model. Humanized non-obese diabetic/SCID/Jak3null (hNOJ) mice were constructed by transplanting hematopoietic stem cells from human umbilical cord blood into newborn NOJ mice, and in vivo transfection (IVT) was performed by hydrodynamic injection-mediated gene delivery using plasmids encoding human Flt3-L and GM-CSF. Following IVT, Flt3-L and GM-CSF were successfully induced in hNOJ mice. At 10 days post-IVT, we found, in the spleen, that treatment with both Flt3-L and GM-CSF enhanced the reconstitution of two myeloid DC subsets, CD14-CD1c+ conventional DCs (cDCs) and CD14-CD141+ cDCs, in addition to CD14+ monocyte-like cells expressing CD1c and/or CD141. GM-CSF alone had less effect on the reconstitution of these myeloid cell populations. By contrast, none of the cytokine treatments enhanced CD123+ plasmacytoid DC (pDC) reconstitution. Regardless of the reconstitution levels, three cell populations (CD1c+ myeloid cells, CD141+ myeloid cells, and pDCs) could be matured by treatment with cytokines, in terms of upregulation of CD40, CD80, CD86, and CD184/CXCR4 and downregulation of CD195/CCR5. In particular, GM-CSF contributed to upregulation of CD80 in all these cell populations. Interestingly, we further observed that Foxp3+ cells within splenic CD4+ T cells were significantly increased in the presence of GM-CSF. Foxp3+ T cells could be subdivided into two subpopulations, CD45RA-Foxp3hi and CD45RA-Foxp3lo T cells. Whereas CD45RA-Foxp3hi T cells were increased only after treatment with GM-CSF alone, CD45RA-Foxp3lo T cells were increased only after treatment with both Flt3-L and GM-CSF. Treatment with Flt3-L alone had no effect on the number of Foxp3+ T cells. The correlation analysis demonstrated that the development of these Foxp3+ subpopulations was associated with the maturation status of DC(-like) cells. Taken together, this study provides a platform for studying the in vivo effect of Flt3-L and GM-CSF on human DCs and regulatory T cells.",
keywords = "Cytokines, Dendritic cells, Flt3-L, Foxp3, GM-CSF, Humanized mice, T cells",
author = "Ryutaro Iwabuchi and Shota Ikeno and Mie Kobayashi-Ishihara and Haruko Takeyama and Manabu Ato and Yasuko Tsunetsugu-Yokota and Kazutaka Terahara",
year = "2018",
month = "5",
day = "28",
doi = "10.3389/fimmu.2018.01042",
language = "English",
volume = "9",
journal = "Frontiers in Immunology",
issn = "1664-3224",
publisher = "Frontiers Media S. A.",
number = "MAY",

}

TY - JOUR

T1 - Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+CD4+ T cells

AU - Iwabuchi, Ryutaro

AU - Ikeno, Shota

AU - Kobayashi-Ishihara, Mie

AU - Takeyama, Haruko

AU - Ato, Manabu

AU - Tsunetsugu-Yokota, Yasuko

AU - Terahara, Kazutaka

PY - 2018/5/28

Y1 - 2018/5/28

N2 - Two cytokines, fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are considered to be the essential regulators of dendritic cell (DC) development in vivo. However, the combined effect of Flt3-L and GM-CSF on human DCs has not been evaluated in vivo. In this study, we, therefore, aimed at evaluating this using a humanized mouse model. Humanized non-obese diabetic/SCID/Jak3null (hNOJ) mice were constructed by transplanting hematopoietic stem cells from human umbilical cord blood into newborn NOJ mice, and in vivo transfection (IVT) was performed by hydrodynamic injection-mediated gene delivery using plasmids encoding human Flt3-L and GM-CSF. Following IVT, Flt3-L and GM-CSF were successfully induced in hNOJ mice. At 10 days post-IVT, we found, in the spleen, that treatment with both Flt3-L and GM-CSF enhanced the reconstitution of two myeloid DC subsets, CD14-CD1c+ conventional DCs (cDCs) and CD14-CD141+ cDCs, in addition to CD14+ monocyte-like cells expressing CD1c and/or CD141. GM-CSF alone had less effect on the reconstitution of these myeloid cell populations. By contrast, none of the cytokine treatments enhanced CD123+ plasmacytoid DC (pDC) reconstitution. Regardless of the reconstitution levels, three cell populations (CD1c+ myeloid cells, CD141+ myeloid cells, and pDCs) could be matured by treatment with cytokines, in terms of upregulation of CD40, CD80, CD86, and CD184/CXCR4 and downregulation of CD195/CCR5. In particular, GM-CSF contributed to upregulation of CD80 in all these cell populations. Interestingly, we further observed that Foxp3+ cells within splenic CD4+ T cells were significantly increased in the presence of GM-CSF. Foxp3+ T cells could be subdivided into two subpopulations, CD45RA-Foxp3hi and CD45RA-Foxp3lo T cells. Whereas CD45RA-Foxp3hi T cells were increased only after treatment with GM-CSF alone, CD45RA-Foxp3lo T cells were increased only after treatment with both Flt3-L and GM-CSF. Treatment with Flt3-L alone had no effect on the number of Foxp3+ T cells. The correlation analysis demonstrated that the development of these Foxp3+ subpopulations was associated with the maturation status of DC(-like) cells. Taken together, this study provides a platform for studying the in vivo effect of Flt3-L and GM-CSF on human DCs and regulatory T cells.

AB - Two cytokines, fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are considered to be the essential regulators of dendritic cell (DC) development in vivo. However, the combined effect of Flt3-L and GM-CSF on human DCs has not been evaluated in vivo. In this study, we, therefore, aimed at evaluating this using a humanized mouse model. Humanized non-obese diabetic/SCID/Jak3null (hNOJ) mice were constructed by transplanting hematopoietic stem cells from human umbilical cord blood into newborn NOJ mice, and in vivo transfection (IVT) was performed by hydrodynamic injection-mediated gene delivery using plasmids encoding human Flt3-L and GM-CSF. Following IVT, Flt3-L and GM-CSF were successfully induced in hNOJ mice. At 10 days post-IVT, we found, in the spleen, that treatment with both Flt3-L and GM-CSF enhanced the reconstitution of two myeloid DC subsets, CD14-CD1c+ conventional DCs (cDCs) and CD14-CD141+ cDCs, in addition to CD14+ monocyte-like cells expressing CD1c and/or CD141. GM-CSF alone had less effect on the reconstitution of these myeloid cell populations. By contrast, none of the cytokine treatments enhanced CD123+ plasmacytoid DC (pDC) reconstitution. Regardless of the reconstitution levels, three cell populations (CD1c+ myeloid cells, CD141+ myeloid cells, and pDCs) could be matured by treatment with cytokines, in terms of upregulation of CD40, CD80, CD86, and CD184/CXCR4 and downregulation of CD195/CCR5. In particular, GM-CSF contributed to upregulation of CD80 in all these cell populations. Interestingly, we further observed that Foxp3+ cells within splenic CD4+ T cells were significantly increased in the presence of GM-CSF. Foxp3+ T cells could be subdivided into two subpopulations, CD45RA-Foxp3hi and CD45RA-Foxp3lo T cells. Whereas CD45RA-Foxp3hi T cells were increased only after treatment with GM-CSF alone, CD45RA-Foxp3lo T cells were increased only after treatment with both Flt3-L and GM-CSF. Treatment with Flt3-L alone had no effect on the number of Foxp3+ T cells. The correlation analysis demonstrated that the development of these Foxp3+ subpopulations was associated with the maturation status of DC(-like) cells. Taken together, this study provides a platform for studying the in vivo effect of Flt3-L and GM-CSF on human DCs and regulatory T cells.

KW - Cytokines

KW - Dendritic cells

KW - Flt3-L

KW - Foxp3

KW - GM-CSF

KW - Humanized mice

KW - T cells

UR - http://www.scopus.com/inward/record.url?scp=85047558802&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047558802&partnerID=8YFLogxK

U2 - 10.3389/fimmu.2018.01042

DO - 10.3389/fimmu.2018.01042

M3 - Article

AN - SCOPUS:85047558802

VL - 9

JO - Frontiers in Immunology

JF - Frontiers in Immunology

SN - 1664-3224

IS - MAY

M1 - 1042

ER -