TY - JOUR
T1 - Involvement of endocytosis in the transdermal penetration mechanism of ketoprofen nanoparticles
AU - Nagai, Noriaki
AU - Ogata, Fumihiko
AU - Ishii, Miyu
AU - Fukuoka, Yuya
AU - Otake, Hiroko
AU - Nakazawa, Yosuke
AU - Kawasaki, Naohito
N1 - Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/7/23
Y1 - 2018/7/23
N2 - We previously designed a novel transdermal formulation containing ketoprofen solid nanoparticles (KET-NPs formulation), and showed that the skin penetration from the KET-NPs formulation was higher than that of a transdermal formulation containing ketoprofen microparticles (KET-MPs formulation). However, the precise mechanism for the skin penetration from the KET-NPs formulation was not clear. In this study we investigated whether energy-dependent endocytosis relates to the transdermal delivery from a 1.5% KET-NPs formulation. Transdermal formulations were prepared by a bead mill method using additives including methylcellulose and carbopol 934. The mean particle size of the ketoprofen nanoparticles was 98.3 nm. Four inhibitors of endocytosis dissolved in 0.5% DMSO (54 µM nystatin, a caveolae-mediated endocytosis inhibitor; 40 µM dynasore, a clathrin-mediated endocytosis inhibitor; 2 µM rottlerin, a macropinocytosis inhibitor; 10 µM cytochalasin D, a phagocytosis inhibitor) were used in this study. In the transdermal penetration study using a Franz diffusion cell, skin penetration through rat skin treated with cytochalasin D was similar to the control (DMSO) group. In contrast to the results for cytochalasin D, skin penetration from the KET-NPs formulation was significantly decreased by treatment with nystatin, dynasore or rottlerin with penetrated ketoprofen concentration-time curves (AUC) values 65%, 69% and 73% of control, respectively. Furthermore, multi-treatment with all three inhibitors (nystatin, dynasore and rottlerin) strongly suppressed the skin penetration from the KET-NPs formulation with an AUC value 13.4% that of the control. In conclusion, we found that caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis are all related to the skin penetration from the KET-NPs formulation. These findings provide significant information for the design of nanomedicines in transdermal formulations.
AB - We previously designed a novel transdermal formulation containing ketoprofen solid nanoparticles (KET-NPs formulation), and showed that the skin penetration from the KET-NPs formulation was higher than that of a transdermal formulation containing ketoprofen microparticles (KET-MPs formulation). However, the precise mechanism for the skin penetration from the KET-NPs formulation was not clear. In this study we investigated whether energy-dependent endocytosis relates to the transdermal delivery from a 1.5% KET-NPs formulation. Transdermal formulations were prepared by a bead mill method using additives including methylcellulose and carbopol 934. The mean particle size of the ketoprofen nanoparticles was 98.3 nm. Four inhibitors of endocytosis dissolved in 0.5% DMSO (54 µM nystatin, a caveolae-mediated endocytosis inhibitor; 40 µM dynasore, a clathrin-mediated endocytosis inhibitor; 2 µM rottlerin, a macropinocytosis inhibitor; 10 µM cytochalasin D, a phagocytosis inhibitor) were used in this study. In the transdermal penetration study using a Franz diffusion cell, skin penetration through rat skin treated with cytochalasin D was similar to the control (DMSO) group. In contrast to the results for cytochalasin D, skin penetration from the KET-NPs formulation was significantly decreased by treatment with nystatin, dynasore or rottlerin with penetrated ketoprofen concentration-time curves (AUC) values 65%, 69% and 73% of control, respectively. Furthermore, multi-treatment with all three inhibitors (nystatin, dynasore and rottlerin) strongly suppressed the skin penetration from the KET-NPs formulation with an AUC value 13.4% that of the control. In conclusion, we found that caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis are all related to the skin penetration from the KET-NPs formulation. These findings provide significant information for the design of nanomedicines in transdermal formulations.
KW - Endocytosis
KW - Ketoprofen
KW - Nanoparticle
KW - Pharmacological inhibitor
KW - Transdermal delivery system
UR - http://www.scopus.com/inward/record.url?scp=85050642162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050642162&partnerID=8YFLogxK
U2 - 10.3390/ijms19072138
DO - 10.3390/ijms19072138
M3 - Article
C2 - 30041452
AN - SCOPUS:85050642162
VL - 19
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 7
M1 - 2138
ER -