Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways

Naho Kitamura, Yoko Yokoyama, Hiroki Taoka, Utana Nagano, Shotaro Hosoda, Tanon Taworntawat, Anna Nakamura, Yoko Ogawa, Kazuo Tsubota, Mitsuhiro Watanabe

Research output: Contribution to journalArticlepeer-review

Abstract

Disruption of iron metabolism is closely related to metabolic diseases. Iron deficiency is frequently associated with obesity and hepatic steatosis. However, the effects of iron supplementation on obesity and energy metabolism remain unclear. Here we show that a high-fat diet supplemented with iron reduces body weight gain and hepatic lipid accumulation in mice. Iron supplementation was found to reduce mitochondrial morphological abnormalities and upregulate gene transcription involved in mitochondrial function and beta oxidation in the liver and skeletal muscle. In both these tissues, iron supplementation increased the expression of genes involved in heme or iron–sulfur (Fe–S) cluster synthesis. Heme and Fe–S cluster, which are iron prosthetic groups contained in electron transport chain complex subunits, are essential for mitochondrial respiration. The findings of this study demonstrated that iron regulates mitochondrial signaling pathways—gene transcription of mitochondrial component molecules synthesis and their energy metabolism. Overall, the study elucidates the molecular basis underlying the relationship between iron supplementation and obesity and hepatic steatosis progression, and the role of iron as a signaling molecule.

Original languageEnglish
Article number10753
JournalScientific reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Iron supplementation regulates the progression of high fat diet induced obesity and hepatic steatosis via mitochondrial signaling pathways'. Together they form a unique fingerprint.

Cite this