Joint angle-torque relations at different levels of muscle activity in maintaining constant position of an upper extremity

Takanori Uchiyama, Wataru Yamada, Kenzo Akazawa

Research output: Contribution to journalArticle

Abstract

While, in general, spring-like property of a muscle has been assumed to account for the position control of extremity, the property has not been firmly proved in human muscles; in particular the static relation between angle and torque under the constant muscle activity that is one of the most fundamental characteristics has not been observed in human voluntary movements yet. The purpose of the preset study is to determine this static relation of human elbow joint with an aid of a neural network model. Three normal volunteers were instructed to maintain their upper extremity at target angle on the horizontal plane by balancing against an external load applied to their wrist. Both joint angle and torque around their elbow and shoulder as well as integrated electromyogram (IEMGs) of five muscles (caput longum and brave bicipitis brachii, triceps brachii, pectralis major and deltoideus) were recorded for five seconds and then time-averaged. The three-layer neural network model was constructed; the inputs were five channels of IEMGs, elbow joint angle, shoulder joint angle, and the outputs were torques of the elbow and shoulder joints. After learning, the elbow joint torque was estimated at various angles of the elbow joint while both IEMGs of five muscles and the shoulder angle were kept constant. Estimated result were as follows. The torque of elbow extensors monotonically increased as flexing the elbow joint, i.e., as elongating extensor muscles. However, the torque of elbow flexors decreased as extending the elbow joint, i.e., as elongating flexor muscles, over an angle range of largely flexed elbow joint. The property of the extensors was in agreement with that of the equilibrium hypothesis, and the property of the flexors was apparently opposite to it.

Original languageEnglish
Pages (from-to)119-126
Number of pages8
JournalJapanese Journal of Medical Electronics and Biological Engineering
Volume34
Issue number2
Publication statusPublished - 1996
Externally publishedYes

Fingerprint

Muscle
Torque
Neural networks
Position control

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

@article{a3cff699ab694148bea2102d29c78c1e,
title = "Joint angle-torque relations at different levels of muscle activity in maintaining constant position of an upper extremity",
abstract = "While, in general, spring-like property of a muscle has been assumed to account for the position control of extremity, the property has not been firmly proved in human muscles; in particular the static relation between angle and torque under the constant muscle activity that is one of the most fundamental characteristics has not been observed in human voluntary movements yet. The purpose of the preset study is to determine this static relation of human elbow joint with an aid of a neural network model. Three normal volunteers were instructed to maintain their upper extremity at target angle on the horizontal plane by balancing against an external load applied to their wrist. Both joint angle and torque around their elbow and shoulder as well as integrated electromyogram (IEMGs) of five muscles (caput longum and brave bicipitis brachii, triceps brachii, pectralis major and deltoideus) were recorded for five seconds and then time-averaged. The three-layer neural network model was constructed; the inputs were five channels of IEMGs, elbow joint angle, shoulder joint angle, and the outputs were torques of the elbow and shoulder joints. After learning, the elbow joint torque was estimated at various angles of the elbow joint while both IEMGs of five muscles and the shoulder angle were kept constant. Estimated result were as follows. The torque of elbow extensors monotonically increased as flexing the elbow joint, i.e., as elongating extensor muscles. However, the torque of elbow flexors decreased as extending the elbow joint, i.e., as elongating flexor muscles, over an angle range of largely flexed elbow joint. The property of the extensors was in agreement with that of the equilibrium hypothesis, and the property of the flexors was apparently opposite to it.",
author = "Takanori Uchiyama and Wataru Yamada and Kenzo Akazawa",
year = "1996",
language = "English",
volume = "34",
pages = "119--126",
journal = "Japanese Journal of Medical Electronics and Biological Engineering",
issn = "0021-3292",
publisher = "Nihon M E Gakkai",
number = "2",

}

TY - JOUR

T1 - Joint angle-torque relations at different levels of muscle activity in maintaining constant position of an upper extremity

AU - Uchiyama, Takanori

AU - Yamada, Wataru

AU - Akazawa, Kenzo

PY - 1996

Y1 - 1996

N2 - While, in general, spring-like property of a muscle has been assumed to account for the position control of extremity, the property has not been firmly proved in human muscles; in particular the static relation between angle and torque under the constant muscle activity that is one of the most fundamental characteristics has not been observed in human voluntary movements yet. The purpose of the preset study is to determine this static relation of human elbow joint with an aid of a neural network model. Three normal volunteers were instructed to maintain their upper extremity at target angle on the horizontal plane by balancing against an external load applied to their wrist. Both joint angle and torque around their elbow and shoulder as well as integrated electromyogram (IEMGs) of five muscles (caput longum and brave bicipitis brachii, triceps brachii, pectralis major and deltoideus) were recorded for five seconds and then time-averaged. The three-layer neural network model was constructed; the inputs were five channels of IEMGs, elbow joint angle, shoulder joint angle, and the outputs were torques of the elbow and shoulder joints. After learning, the elbow joint torque was estimated at various angles of the elbow joint while both IEMGs of five muscles and the shoulder angle were kept constant. Estimated result were as follows. The torque of elbow extensors monotonically increased as flexing the elbow joint, i.e., as elongating extensor muscles. However, the torque of elbow flexors decreased as extending the elbow joint, i.e., as elongating flexor muscles, over an angle range of largely flexed elbow joint. The property of the extensors was in agreement with that of the equilibrium hypothesis, and the property of the flexors was apparently opposite to it.

AB - While, in general, spring-like property of a muscle has been assumed to account for the position control of extremity, the property has not been firmly proved in human muscles; in particular the static relation between angle and torque under the constant muscle activity that is one of the most fundamental characteristics has not been observed in human voluntary movements yet. The purpose of the preset study is to determine this static relation of human elbow joint with an aid of a neural network model. Three normal volunteers were instructed to maintain their upper extremity at target angle on the horizontal plane by balancing against an external load applied to their wrist. Both joint angle and torque around their elbow and shoulder as well as integrated electromyogram (IEMGs) of five muscles (caput longum and brave bicipitis brachii, triceps brachii, pectralis major and deltoideus) were recorded for five seconds and then time-averaged. The three-layer neural network model was constructed; the inputs were five channels of IEMGs, elbow joint angle, shoulder joint angle, and the outputs were torques of the elbow and shoulder joints. After learning, the elbow joint torque was estimated at various angles of the elbow joint while both IEMGs of five muscles and the shoulder angle were kept constant. Estimated result were as follows. The torque of elbow extensors monotonically increased as flexing the elbow joint, i.e., as elongating extensor muscles. However, the torque of elbow flexors decreased as extending the elbow joint, i.e., as elongating flexor muscles, over an angle range of largely flexed elbow joint. The property of the extensors was in agreement with that of the equilibrium hypothesis, and the property of the flexors was apparently opposite to it.

UR - http://www.scopus.com/inward/record.url?scp=0029938865&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029938865&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0029938865

VL - 34

SP - 119

EP - 126

JO - Japanese Journal of Medical Electronics and Biological Engineering

JF - Japanese Journal of Medical Electronics and Biological Engineering

SN - 0021-3292

IS - 2

ER -