Kähler normal coordinate expansion in supersymmetric theories

Kiyoshi Higashijima, Muneto Nitta

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

The Riemann normal coordinate expansion method is generalized to a Kähler manifold. The Kähler potential and holomorphic coordinate transformations are used to define normal coordinates preserving the complex structure. The existence of these Kähler normal coordinates is shown explicitly to all orders. The formalism is applied to background field methods in supersymmetric nonlinear sigma models.

Original languageEnglish
Pages (from-to)243-260
Number of pages18
JournalProgress of Theoretical Physics
Volume105
Issue number2
DOIs
Publication statusPublished - 2001 Feb
Externally publishedYes

Fingerprint

expansion
coordinate transformations
preserving
formalism

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Kähler normal coordinate expansion in supersymmetric theories. / Higashijima, Kiyoshi; Nitta, Muneto.

In: Progress of Theoretical Physics, Vol. 105, No. 2, 02.2001, p. 243-260.

Research output: Contribution to journalArticle

@article{c4629cb649954bdcac866fba99ac45af,
title = "K{\"a}hler normal coordinate expansion in supersymmetric theories",
abstract = "The Riemann normal coordinate expansion method is generalized to a K{\"a}hler manifold. The K{\"a}hler potential and holomorphic coordinate transformations are used to define normal coordinates preserving the complex structure. The existence of these K{\"a}hler normal coordinates is shown explicitly to all orders. The formalism is applied to background field methods in supersymmetric nonlinear sigma models.",
author = "Kiyoshi Higashijima and Muneto Nitta",
year = "2001",
month = "2",
doi = "10.1143/PTP.105.243",
language = "English",
volume = "105",
pages = "243--260",
journal = "Progress of Theoretical Physics",
issn = "0033-068X",
publisher = "Yukawa Institute for Theoretical Physics",
number = "2",

}

TY - JOUR

T1 - Kähler normal coordinate expansion in supersymmetric theories

AU - Higashijima, Kiyoshi

AU - Nitta, Muneto

PY - 2001/2

Y1 - 2001/2

N2 - The Riemann normal coordinate expansion method is generalized to a Kähler manifold. The Kähler potential and holomorphic coordinate transformations are used to define normal coordinates preserving the complex structure. The existence of these Kähler normal coordinates is shown explicitly to all orders. The formalism is applied to background field methods in supersymmetric nonlinear sigma models.

AB - The Riemann normal coordinate expansion method is generalized to a Kähler manifold. The Kähler potential and holomorphic coordinate transformations are used to define normal coordinates preserving the complex structure. The existence of these Kähler normal coordinates is shown explicitly to all orders. The formalism is applied to background field methods in supersymmetric nonlinear sigma models.

UR - http://www.scopus.com/inward/record.url?scp=0035532559&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035532559&partnerID=8YFLogxK

U2 - 10.1143/PTP.105.243

DO - 10.1143/PTP.105.243

M3 - Article

AN - SCOPUS:0035532559

VL - 105

SP - 243

EP - 260

JO - Progress of Theoretical Physics

JF - Progress of Theoretical Physics

SN - 0033-068X

IS - 2

ER -