Knot Floer homology of (1, 1)-knots

Hiroshi Goda, Hiroshi Matsuda, Takayuki Morifuji

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We present a combinatorial method for a calculation of the knot Floer homology of (1, l)-knots, and then demonstrate it for nonalternating (1, 1)-knots with 10 crossings and the pretzel knots of type (-2,m, n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.

Original languageEnglish
Pages (from-to)197-214
Number of pages18
JournalGeometriae Dedicata
Volume112
Issue number1
DOIs
Publication statusPublished - 2005 Apr
Externally publishedYes

Fingerprint

Floer Homology
Pretzel Knot
Knot
Unknotting number
Genus
Demonstrate

Keywords

  • (1, 1)-knots
  • Floer homology
  • Knot Floer homology
  • Pretzel knot
  • Tunnel number one knots

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Knot Floer homology of (1, 1)-knots. / Goda, Hiroshi; Matsuda, Hiroshi; Morifuji, Takayuki.

In: Geometriae Dedicata, Vol. 112, No. 1, 04.2005, p. 197-214.

Research output: Contribution to journalArticle

Goda, Hiroshi ; Matsuda, Hiroshi ; Morifuji, Takayuki. / Knot Floer homology of (1, 1)-knots. In: Geometriae Dedicata. 2005 ; Vol. 112, No. 1. pp. 197-214.
@article{7dd5403594584c1383db4116f5144d6a,
title = "Knot Floer homology of (1, 1)-knots",
abstract = "We present a combinatorial method for a calculation of the knot Floer homology of (1, l)-knots, and then demonstrate it for nonalternating (1, 1)-knots with 10 crossings and the pretzel knots of type (-2,m, n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.",
keywords = "(1, 1)-knots, Floer homology, Knot Floer homology, Pretzel knot, Tunnel number one knots",
author = "Hiroshi Goda and Hiroshi Matsuda and Takayuki Morifuji",
year = "2005",
month = "4",
doi = "10.1007/s10711-004-5403-2",
language = "English",
volume = "112",
pages = "197--214",
journal = "Geometriae Dedicata",
issn = "0046-5755",
publisher = "Springer Netherlands",
number = "1",

}

TY - JOUR

T1 - Knot Floer homology of (1, 1)-knots

AU - Goda, Hiroshi

AU - Matsuda, Hiroshi

AU - Morifuji, Takayuki

PY - 2005/4

Y1 - 2005/4

N2 - We present a combinatorial method for a calculation of the knot Floer homology of (1, l)-knots, and then demonstrate it for nonalternating (1, 1)-knots with 10 crossings and the pretzel knots of type (-2,m, n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.

AB - We present a combinatorial method for a calculation of the knot Floer homology of (1, l)-knots, and then demonstrate it for nonalternating (1, 1)-knots with 10 crossings and the pretzel knots of type (-2,m, n). Our calculations determine the unknotting numbers and 4-genera of the pretzel knots of this type.

KW - (1, 1)-knots

KW - Floer homology

KW - Knot Floer homology

KW - Pretzel knot

KW - Tunnel number one knots

UR - http://www.scopus.com/inward/record.url?scp=23944501601&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=23944501601&partnerID=8YFLogxK

U2 - 10.1007/s10711-004-5403-2

DO - 10.1007/s10711-004-5403-2

M3 - Article

AN - SCOPUS:23944501601

VL - 112

SP - 197

EP - 214

JO - Geometriae Dedicata

JF - Geometriae Dedicata

SN - 0046-5755

IS - 1

ER -