Knowledge acquisitions from large databases using machine learning techniques

Research output: Contribution to journalArticlepeer-review

Abstract

The rapid growth of data in large databases such as text database, scientific database requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Since the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed, primary data. Technology from machine learning theory will offer efficient tools for the intelligent analysis using "generalization" ability. Generalization is an important ability specific to inductive learning which will predict unseen data with high accuracy based on learned concepts from training examples. We will demonstrate the effectiveness of our approach where generalization ability is applied to predicting and analyzing primary data and extracting knowledges from database by presenting some our results on text database analysis and biological sequence analysis.

Original languageEnglish
Pages (from-to)1115-1120
Number of pages6
JournalAdvances in Human Factors/Ergonomics
Volume20
Issue numberC
DOIs
Publication statusPublished - 1995 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Social Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Knowledge acquisitions from large databases using machine learning techniques'. Together they form a unique fingerprint.

Cite this