Knowledge Processing system using Chaotic Associative Memory

Yuko Osana, Masafumi Hagiwara

Research output: Contribution to conferencePaperpeer-review

Abstract

In this paper, we propose a Knowledge Processing system using Chaotic Associative Memory (KPCAM). The proposed KPCAM is based on a Chaotic Associative Memory (CAM) composed of chaotic neurons. In the conventional chaotic neural network, when a stored pattern is given to the network as an external input continuously, around the input pattern is searched. The CAM makes use of this property in order to separate superimposed patterns and to deal with many-to-many associations. In this research, the CAM is applied to knowledge processing in which the knowledge is represented in a form of semantic network. The proposed KPCAM has the following features: (1) it can deal with the knowledge which is represented in a form of semantic network; (2) it can deal with characteristics inheritance; (3) it is robust for noisy input. A series of computer simulations shows the effectiveness of the proposed system.

Original languageEnglish
Pages746-751
Number of pages6
Publication statusPublished - 1999
EventInternational Joint Conference on Neural Networks (IJCNN'99) - Washington, DC, USA
Duration: 1999 Jul 101999 Jul 16

Other

OtherInternational Joint Conference on Neural Networks (IJCNN'99)
CityWashington, DC, USA
Period99/7/1099/7/16

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Knowledge Processing system using Chaotic Associative Memory'. Together they form a unique fingerprint.

Cite this