K1, 3-factors in graphs

Yoshimi Egawa, Shinya Fujita, Katsuhiro Ota

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Let k be a positive integer. It is shown that if G is a graph of order 4 k with minimum degree at least 2 k, then G contains k vertex-disjoint copies of K1, 3, unless G is isomorphic to K2 k, 2 k with k being odd.

Original languageEnglish
Pages (from-to)5965-5973
Number of pages9
JournalDiscrete Mathematics
Volume308
Issue number24
DOIs
Publication statusPublished - 2008 Dec 28

Fingerprint

Minimum Degree
Disjoint
Isomorphic
Odd
Integer
Graph in graph theory
Vertex of a graph

Keywords

  • Claw
  • Factor
  • Minimum degree
  • Vertex-disjoint subgraphs

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

K1, 3-factors in graphs. / Egawa, Yoshimi; Fujita, Shinya; Ota, Katsuhiro.

In: Discrete Mathematics, Vol. 308, No. 24, 28.12.2008, p. 5965-5973.

Research output: Contribution to journalArticle

Egawa, Y, Fujita, S & Ota, K 2008, 'K1, 3-factors in graphs', Discrete Mathematics, vol. 308, no. 24, pp. 5965-5973. https://doi.org/10.1016/j.disc.2007.11.013
Egawa, Yoshimi ; Fujita, Shinya ; Ota, Katsuhiro. / K1, 3-factors in graphs. In: Discrete Mathematics. 2008 ; Vol. 308, No. 24. pp. 5965-5973.
@article{537123b99771415c90ccfa002d51c556,
title = "K1, 3-factors in graphs",
abstract = "Let k be a positive integer. It is shown that if G is a graph of order 4 k with minimum degree at least 2 k, then G contains k vertex-disjoint copies of K1, 3, unless G is isomorphic to K2 k, 2 k with k being odd.",
keywords = "Claw, Factor, Minimum degree, Vertex-disjoint subgraphs",
author = "Yoshimi Egawa and Shinya Fujita and Katsuhiro Ota",
year = "2008",
month = "12",
day = "28",
doi = "10.1016/j.disc.2007.11.013",
language = "English",
volume = "308",
pages = "5965--5973",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "24",

}

TY - JOUR

T1 - K1, 3-factors in graphs

AU - Egawa, Yoshimi

AU - Fujita, Shinya

AU - Ota, Katsuhiro

PY - 2008/12/28

Y1 - 2008/12/28

N2 - Let k be a positive integer. It is shown that if G is a graph of order 4 k with minimum degree at least 2 k, then G contains k vertex-disjoint copies of K1, 3, unless G is isomorphic to K2 k, 2 k with k being odd.

AB - Let k be a positive integer. It is shown that if G is a graph of order 4 k with minimum degree at least 2 k, then G contains k vertex-disjoint copies of K1, 3, unless G is isomorphic to K2 k, 2 k with k being odd.

KW - Claw

KW - Factor

KW - Minimum degree

KW - Vertex-disjoint subgraphs

UR - http://www.scopus.com/inward/record.url?scp=56649114546&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56649114546&partnerID=8YFLogxK

U2 - 10.1016/j.disc.2007.11.013

DO - 10.1016/j.disc.2007.11.013

M3 - Article

AN - SCOPUS:56649114546

VL - 308

SP - 5965

EP - 5973

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 24

ER -