LAT1-targeting thermoresponsive fluorescent polymer probes for cancer cell imaging

Minami Matsuura, Mariko Ohshima, Yuki Hiruta, Tomohiro Nishimura, Kenichi Nagase, Hideko Kanazawa

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.

Original languageEnglish
Article number1646
JournalInternational Journal of Molecular Sciences
Volume19
Issue number6
DOIs
Publication statusPublished - 2018 Jun 1

Fingerprint

Amino Acid Transport Systems
transporter
Fluorescent Dyes
amino acids
Amino acids
Polymers
cancer
Cells
Imaging techniques
probes
polymers
Neoplasms
tyrosine
Tyrosine
affinity
leucine
Leucine
phenylalanine
cytometry
Flow cytometry

Keywords

  • Fluorescent polymer probe
  • L-type amino acid transporter 1 targeting
  • Poly(N-isopropylacrylamide)

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{1900c25075324fd1afb6345fbefd5eb9,
title = "LAT1-targeting thermoresponsive fluorescent polymer probes for cancer cell imaging",
abstract = "L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.",
keywords = "Fluorescent polymer probe, L-type amino acid transporter 1 targeting, Poly(N-isopropylacrylamide)",
author = "Minami Matsuura and Mariko Ohshima and Yuki Hiruta and Tomohiro Nishimura and Kenichi Nagase and Hideko Kanazawa",
year = "2018",
month = "6",
day = "1",
doi = "10.3390/ijms19061646",
language = "English",
volume = "19",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "6",

}

TY - JOUR

T1 - LAT1-targeting thermoresponsive fluorescent polymer probes for cancer cell imaging

AU - Matsuura, Minami

AU - Ohshima, Mariko

AU - Hiruta, Yuki

AU - Nishimura, Tomohiro

AU - Nagase, Kenichi

AU - Kanazawa, Hideko

PY - 2018/6/1

Y1 - 2018/6/1

N2 - L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.

AB - L-type amino acid transporter 1 (LAT1) is more highly expressed in cancer cells compared with normal cells. LAT1 targeting probes would therefore be a promising tool for cancer cell imaging. In this study, LAT1-targeting thermoresponsive fluorescent polymer probes based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) were synthesized and their affinity for LAT1 was evaluated. The synthesized polymer probes interacted with LAT1 on HeLa cells, and inhibition of L-[3 H]-leucine, one of the substrates for LAT1 uptake, was investigated. L-Tyrosine-conjugated P(NIPAAm-co-DMAAm) inhibited the uptake of L-[3 H]-leucine, while P(NIPAAm-co-DMAAm) and L-phenylalanine-conjugated P(NIPAAm-co-DMAAm) did not. This result indicated that L-tyrosine-conjugated polymer has a high affinity for LAT1. The fluorescent polymer probes were prepared by modification of a terminal polymer group with fluorescein-5-maleimide (FL). Above the polymer transition temperature, cellular uptake of the polymer probes was observed because the polymers became hydrophobic, which enhanced the interaction with the cell membrane. Furthermore, quantitative analysis of the fluorescent probe using flow cytometry indicated that L-tyrosine-conjugated P(NIPAAm-co-DMAAm)-FL shows higher fluorescence intensity earlier than P(NIPAAm-co-DMAAm)-FL. The result suggested that cellular uptake was promoted by the LAT1 affinity site. The developed LAT1-targeting thermoresponsive fluorescent polymer probes are expected to be useful for cancer cell imaging.

KW - Fluorescent polymer probe

KW - L-type amino acid transporter 1 targeting

KW - Poly(N-isopropylacrylamide)

UR - http://www.scopus.com/inward/record.url?scp=85048037778&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048037778&partnerID=8YFLogxK

U2 - 10.3390/ijms19061646

DO - 10.3390/ijms19061646

M3 - Article

VL - 19

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 6

M1 - 1646

ER -