Lightning frequency in an idealized hurricane-like vortex from initial to steady-state using a coupled meteorological and explicit bulk lightning model

Yousuke Sato, Yoshiaki Miyamoto, Hirofumi Tomita

Research output: Contribution to journalArticlepeer-review

Abstract

The dependence of lightning frequency on the life cycle of an idealized tropical cyclone (TC) was investigated using a three-dimensional meteorological model coupled with an explicit lightning model. To investigate this dependence, an idealized numerical simulation covering the initial state to the steady state (SS) of an idealized TC was conducted. The simulation was consistent with the temporal evolution of lightning frequency reported by previous observational studies. Our analyses showed that the dependence originates from changes in the types of convective cloud with lightning over the life cycle of the TC. Before rapid intensification (RI) and in the early stage of RI, convective cloud cells that form under high-convective available potential energy (CAPE) conditions are the main contributors to lightning. As the TC reaches the late stage of RI and approaches SS, the secondary circulation becomes prominent and convective clouds in the eyewall region alongside the secondary circulation gradually become the main contributors to the lightning. In the convective cloud cells formed under high-CAPE conditions, upward velocity is strong and large charge density is provided through noninductive charge separation induced by graupel collisions. This large charge density frequently induces lightning in the clouds. On the other hand, the vertical velocity in the eyewall is weak, and it tends to contribute to lightning only when the TC reaches the mature stage. Our analyses imply that the maximum lightning frequency that occurs before the maximum intensity of a TC corresponds to the stage of a TC's life cycle in which convective cloud cells are generated most frequently and moisten the upper troposphere.

Original languageEnglish
Pages (from-to)753-771
Number of pages19
JournalMonthly Weather Review
Volume149
Issue number3
DOIs
Publication statusPublished - 2021 Feb

Keywords

  • Cloud microphysics
  • Cloud-resolving models
  • Clouds
  • Lightning
  • Tropical cyclones

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Lightning frequency in an idealized hurricane-like vortex from initial to steady-state using a coupled meteorological and explicit bulk lightning model'. Together they form a unique fingerprint.

Cite this