Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

Fumiya Hamaguchi, Keita Ando

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

Original languageEnglish
Article number113103
JournalPhysics of Fluids
Volume27
Issue number11
DOIs
Publication statusPublished - 2015 Nov 1

Fingerprint

bubbles
oscillations
irradiation
gases
gelatins
Rayleigh equations
gels
forced vibration
shear thinning
high speed cameras
stress relaxation
constitutive equations
sound waves
rigidity
infrared lasers
frequency response
mass transfer
tuning
viscosity
radii

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation. / Hamaguchi, Fumiya; Ando, Keita.

In: Physics of Fluids, Vol. 27, No. 11, 113103, 01.11.2015.

Research output: Contribution to journalArticle

@article{498088de60b9423aafbc421ff349245d,
title = "Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation",
abstract = "Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.",
author = "Fumiya Hamaguchi and Keita Ando",
year = "2015",
month = "11",
day = "1",
doi = "10.1063/1.4935875",
language = "English",
volume = "27",
journal = "Physics of Fluids",
issn = "1070-6631",
publisher = "American Institute of Physics Publising LLC",
number = "11",

}

TY - JOUR

T1 - Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation

AU - Hamaguchi, Fumiya

AU - Ando, Keita

PY - 2015/11/1

Y1 - 2015/11/1

N2 - Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

AB - Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.

UR - http://www.scopus.com/inward/record.url?scp=84969577615&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84969577615&partnerID=8YFLogxK

U2 - 10.1063/1.4935875

DO - 10.1063/1.4935875

M3 - Article

VL - 27

JO - Physics of Fluids

JF - Physics of Fluids

SN - 1070-6631

IS - 11

M1 - 113103

ER -