Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots

Toshiharu Saiki, Kenichi Nishi, Motoichi Ohtsu

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

We investigate InGaAs single-dot photoluminescence spectra and images using a low-temperature near-field optical microscope. By modifying the commonly used near-field technique, a high spatial resolution and high detection efficiency are achieved simultaneously. Local collection of the emission signal through a 500 nm (λ/2) aperture contributes to the single-dot imaging with a λ/6 resolution, which is a significant improvement over the conventional spatially resolved spectroscopy. Tailoring the tapered structure of the near-field probe enables us to obtain the emission spectra of single dots in the weak excitation region, where the carrier injection rate is ∼107 excitons/s per dot. By employing such a technique, we examine the evolution of single-dot emission spectra with excitation intensity. In addition to the ground-state emission, excited-state and biexciton emissions are observed for higher excitation intensities. By a precise investigation of the excitation power dependences of individual dots, two-dimensional identification of their emission origins is obtained for the first time.

Original languageEnglish
Pages (from-to)1638-1642
Number of pages5
JournalJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
Volume37
Issue number3 SUPPL. B
DOIs
Publication statusPublished - 1998 Mar
Externally publishedYes

Keywords

  • Biexciton
  • Exciton
  • Near-field optical microscope
  • Photoluminescence
  • Quantum dot

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots'. Together they form a unique fingerprint.

Cite this