Müller glial responses compensate for degenerating photoreceptors in retinitis pigmentosa

Yohei Tomita, Chenxi Qiu, Edward Bull, William Allen, Yumi Kotoda, Saswata Talukdar, Lois E.H. Smith, Zhongjie Fu

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Photoreceptor degeneration caused by genetic defects leads to retinitis pigmentosa, a rare disease typically diagnosed in adolescents and young adults. In most cases, rod loss occurs first, followed by cone loss as well as altered function in cells connected to photoreceptors directly or indirectly. There remains a gap in our understanding of retinal cellular responses to photoreceptor abnormalities. Here, we utilized single-cell transcriptomics to investigate cellular responses in each major retinal cell type in retinitis pigmentosa model (P23H) mice vs. wild-type littermate mice. We found a significant decrease in the expression of genes associated with phototransduction, the inner/outer segment, photoreceptor cell cilium, and photoreceptor development in both rod and cone clusters, in line with the structural changes seen with immunohistochemistry. Accompanying this loss was a significant decrease in the expression of genes involved in metabolic pathways and energy production in both rods and cones. We found that in the Müller glia/astrocyte cluster, there was a significant increase in gene expression in pathways involving photoreceptor maintenance, while concomitant decreases were observed in rods and cones. Additionally, the expression of genes involved in mitochondrial localization and transport was increased in the Müller glia/astrocyte cluster. The Müller glial compensatory increase in the expression of genes downregulated in photoreceptors suggests that Müller glia adapt their transcriptome to support photoreceptors and could be thought of as general therapeutic targets to protect against retinal degeneration.

Original languageEnglish
Pages (from-to)1748-1758
Number of pages11
JournalExperimental and Molecular Medicine
Volume53
Issue number11
DOIs
Publication statusPublished - 2021 Nov
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Müller glial responses compensate for degenerating photoreceptors in retinitis pigmentosa'. Together they form a unique fingerprint.

Cite this