Magnetic properties of spin quantum cross devices utilizing stray magnetic fields

Hideo Kaiju, Haruya Kasa, Takashi Komine, Taro Abe, Takahiro Misawa, Junji Nishii

Research output: Contribution to journalArticle

Abstract

We investigate structural and magnetic properties of Co thin-film electrodes used in a new type of spin quantum cross (SQC) devices, in which a strong stray magnetic field could be generated between the both edges of magnetic thin-film electrodes. We also calculate the stray field between the two edges of Co thin-film electrodes in SQC devices and discuss the possibility to novel spintronics devices. As a result of magnetic force microscopy (MFM) observations, the stray fields are generated from the Co edges, and they are uniformly distributed. This result indicates that magnetic single-domain structures can be formed. This is consistent with the result obtained by magneto-optical Kerr effect (MOKE). The theoretical calculation reveals that the stray field exhibits as high as 7000 Oe under the condition that the distance between the two Co edges is 5 nm and the Co thickness is 19 nm. These results indicate that SQC devices utilizing stray fields can be expected as novel spintronics devices, such as spin filtering devices and beyond CMOS switching devices.

Original languageEnglish
Article number00488
JournalEarth and Environmental Science Transactions of the Royal Society of Edinburgh
Volume1708
Issue number4
DOIs
Publication statusPublished - 2014 May 19
Externally publishedYes

Fingerprint

magnetic property
electrode
magnetic field
domain structure
microscopy

Keywords

  • magnetic properties
  • nanostructure
  • spintronic

ASJC Scopus subject areas

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Cite this

Magnetic properties of spin quantum cross devices utilizing stray magnetic fields. / Kaiju, Hideo; Kasa, Haruya; Komine, Takashi; Abe, Taro; Misawa, Takahiro; Nishii, Junji.

In: Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Vol. 1708, No. 4, 00488, 19.05.2014.

Research output: Contribution to journalArticle

Kaiju, Hideo ; Kasa, Haruya ; Komine, Takashi ; Abe, Taro ; Misawa, Takahiro ; Nishii, Junji. / Magnetic properties of spin quantum cross devices utilizing stray magnetic fields. In: Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2014 ; Vol. 1708, No. 4.
@article{a6b81a69d6b740ec90bffdb372c0f1fc,
title = "Magnetic properties of spin quantum cross devices utilizing stray magnetic fields",
abstract = "We investigate structural and magnetic properties of Co thin-film electrodes used in a new type of spin quantum cross (SQC) devices, in which a strong stray magnetic field could be generated between the both edges of magnetic thin-film electrodes. We also calculate the stray field between the two edges of Co thin-film electrodes in SQC devices and discuss the possibility to novel spintronics devices. As a result of magnetic force microscopy (MFM) observations, the stray fields are generated from the Co edges, and they are uniformly distributed. This result indicates that magnetic single-domain structures can be formed. This is consistent with the result obtained by magneto-optical Kerr effect (MOKE). The theoretical calculation reveals that the stray field exhibits as high as 7000 Oe under the condition that the distance between the two Co edges is 5 nm and the Co thickness is 19 nm. These results indicate that SQC devices utilizing stray fields can be expected as novel spintronics devices, such as spin filtering devices and beyond CMOS switching devices.",
keywords = "magnetic properties, nanostructure, spintronic",
author = "Hideo Kaiju and Haruya Kasa and Takashi Komine and Taro Abe and Takahiro Misawa and Junji Nishii",
year = "2014",
month = "5",
day = "19",
doi = "10.1557/opl.2014.488",
language = "English",
volume = "1708",
journal = "Earth and Environmental Science Transactions of the Royal Society of Edinburgh",
issn = "1755-6910",
publisher = "Cambridge University Press",
number = "4",

}

TY - JOUR

T1 - Magnetic properties of spin quantum cross devices utilizing stray magnetic fields

AU - Kaiju, Hideo

AU - Kasa, Haruya

AU - Komine, Takashi

AU - Abe, Taro

AU - Misawa, Takahiro

AU - Nishii, Junji

PY - 2014/5/19

Y1 - 2014/5/19

N2 - We investigate structural and magnetic properties of Co thin-film electrodes used in a new type of spin quantum cross (SQC) devices, in which a strong stray magnetic field could be generated between the both edges of magnetic thin-film electrodes. We also calculate the stray field between the two edges of Co thin-film electrodes in SQC devices and discuss the possibility to novel spintronics devices. As a result of magnetic force microscopy (MFM) observations, the stray fields are generated from the Co edges, and they are uniformly distributed. This result indicates that magnetic single-domain structures can be formed. This is consistent with the result obtained by magneto-optical Kerr effect (MOKE). The theoretical calculation reveals that the stray field exhibits as high as 7000 Oe under the condition that the distance between the two Co edges is 5 nm and the Co thickness is 19 nm. These results indicate that SQC devices utilizing stray fields can be expected as novel spintronics devices, such as spin filtering devices and beyond CMOS switching devices.

AB - We investigate structural and magnetic properties of Co thin-film electrodes used in a new type of spin quantum cross (SQC) devices, in which a strong stray magnetic field could be generated between the both edges of magnetic thin-film electrodes. We also calculate the stray field between the two edges of Co thin-film electrodes in SQC devices and discuss the possibility to novel spintronics devices. As a result of magnetic force microscopy (MFM) observations, the stray fields are generated from the Co edges, and they are uniformly distributed. This result indicates that magnetic single-domain structures can be formed. This is consistent with the result obtained by magneto-optical Kerr effect (MOKE). The theoretical calculation reveals that the stray field exhibits as high as 7000 Oe under the condition that the distance between the two Co edges is 5 nm and the Co thickness is 19 nm. These results indicate that SQC devices utilizing stray fields can be expected as novel spintronics devices, such as spin filtering devices and beyond CMOS switching devices.

KW - magnetic properties

KW - nanostructure

KW - spintronic

UR - http://www.scopus.com/inward/record.url?scp=84910631673&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84910631673&partnerID=8YFLogxK

U2 - 10.1557/opl.2014.488

DO - 10.1557/opl.2014.488

M3 - Article

AN - SCOPUS:84910631673

VL - 1708

JO - Earth and Environmental Science Transactions of the Royal Society of Edinburgh

JF - Earth and Environmental Science Transactions of the Royal Society of Edinburgh

SN - 1755-6910

IS - 4

M1 - 00488

ER -