Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats.

Naobumi Hosogane, Toshimasa Shinki, Hisao Kasuga, Shigehisa Taketomi, Yoshiaki Toyama, Tatsuo Suda

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

24-Hydroxylase (CYP24) is an enzyme distributed in the target tissues of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Two functions for this enzyme have been reported: One is production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and the other is inactivation of 1alpha,25(OH)2D3. To elucidate other physiologic roles of CYP24 in vivo, we previously generated rats that constitutively express the CYP24 gene. These transgenic (Tg) rats developed unexpected phenotypes, such as low plasma levels of 24,25(OH)2D3, lipidemia, and albuminuria. In this study, we elucidated the mechanisms for inducing low plasma 24,25(OH)2D3 levels and bone loss. Tg rats excreted massive amounts of vitamin D binding protein (DBP), which coincided with the loss of albumin. In Tg rats, the renal expression pattern of megalin, which serves as an endocytotic receptor responsible for the reuptake of urinary proteins such as DBP and albumin, was identical to that of the wild-type rats. Excreted albumin appeared to compete for the binding and reabsorption of the DBP-25-hydroxyvitamin D3 [25(OH)D3] complex with megalin, resulting in a loss of 25(OH)D3 into the urine and subsequent reduction of plasma 24,25(OH)2D3. In this prominent rat model of nephritis, supplementation of 25(OH)D3 was effective in preventing bone loss in an early stage of renal insufficiency.

Original languageEnglish
Pages (from-to)737-739
Number of pages3
JournalThe FASEB journal : official publication of the Federation of American Societies for Experimental Biology
Volume17
Issue number6
Publication statusPublished - 2003
Externally publishedYes

Fingerprint

24,25-Dihydroxyvitamin D 3
Transgenic Rats
Mixed Function Oxygenases
Low Density Lipoprotein Receptor-Related Protein-2
Rats
Albumins
Bone
Bone and Bones
Carrier Proteins
Vitamin D-Binding Protein
Calcifediol
Albuminuria
Nephritis
Hyperlipidemias
Plasmas
Renal Insufficiency
Urine
Phenotype
Kidney
Enzymes

Cite this

Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats. / Hosogane, Naobumi; Shinki, Toshimasa; Kasuga, Hisao; Taketomi, Shigehisa; Toyama, Yoshiaki; Suda, Tatsuo.

In: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Vol. 17, No. 6, 2003, p. 737-739.

Research output: Contribution to journalArticle

Hosogane, Naobumi ; Shinki, Toshimasa ; Kasuga, Hisao ; Taketomi, Shigehisa ; Toyama, Yoshiaki ; Suda, Tatsuo. / Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats. In: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003 ; Vol. 17, No. 6. pp. 737-739.
@article{5258d783f1aa42a7b8c84765004ed408,
title = "Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats.",
abstract = "24-Hydroxylase (CYP24) is an enzyme distributed in the target tissues of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Two functions for this enzyme have been reported: One is production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and the other is inactivation of 1alpha,25(OH)2D3. To elucidate other physiologic roles of CYP24 in vivo, we previously generated rats that constitutively express the CYP24 gene. These transgenic (Tg) rats developed unexpected phenotypes, such as low plasma levels of 24,25(OH)2D3, lipidemia, and albuminuria. In this study, we elucidated the mechanisms for inducing low plasma 24,25(OH)2D3 levels and bone loss. Tg rats excreted massive amounts of vitamin D binding protein (DBP), which coincided with the loss of albumin. In Tg rats, the renal expression pattern of megalin, which serves as an endocytotic receptor responsible for the reuptake of urinary proteins such as DBP and albumin, was identical to that of the wild-type rats. Excreted albumin appeared to compete for the binding and reabsorption of the DBP-25-hydroxyvitamin D3 [25(OH)D3] complex with megalin, resulting in a loss of 25(OH)D3 into the urine and subsequent reduction of plasma 24,25(OH)2D3. In this prominent rat model of nephritis, supplementation of 25(OH)D3 was effective in preventing bone loss in an early stage of renal insufficiency.",
author = "Naobumi Hosogane and Toshimasa Shinki and Hisao Kasuga and Shigehisa Taketomi and Yoshiaki Toyama and Tatsuo Suda",
year = "2003",
language = "English",
volume = "17",
pages = "737--739",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "6",

}

TY - JOUR

T1 - Mechanisms for the reduction of 24,25-dihydroxyvitamin D3 levels and bone mass in 24-hydroxylase transgenic rats.

AU - Hosogane, Naobumi

AU - Shinki, Toshimasa

AU - Kasuga, Hisao

AU - Taketomi, Shigehisa

AU - Toyama, Yoshiaki

AU - Suda, Tatsuo

PY - 2003

Y1 - 2003

N2 - 24-Hydroxylase (CYP24) is an enzyme distributed in the target tissues of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Two functions for this enzyme have been reported: One is production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and the other is inactivation of 1alpha,25(OH)2D3. To elucidate other physiologic roles of CYP24 in vivo, we previously generated rats that constitutively express the CYP24 gene. These transgenic (Tg) rats developed unexpected phenotypes, such as low plasma levels of 24,25(OH)2D3, lipidemia, and albuminuria. In this study, we elucidated the mechanisms for inducing low plasma 24,25(OH)2D3 levels and bone loss. Tg rats excreted massive amounts of vitamin D binding protein (DBP), which coincided with the loss of albumin. In Tg rats, the renal expression pattern of megalin, which serves as an endocytotic receptor responsible for the reuptake of urinary proteins such as DBP and albumin, was identical to that of the wild-type rats. Excreted albumin appeared to compete for the binding and reabsorption of the DBP-25-hydroxyvitamin D3 [25(OH)D3] complex with megalin, resulting in a loss of 25(OH)D3 into the urine and subsequent reduction of plasma 24,25(OH)2D3. In this prominent rat model of nephritis, supplementation of 25(OH)D3 was effective in preventing bone loss in an early stage of renal insufficiency.

AB - 24-Hydroxylase (CYP24) is an enzyme distributed in the target tissues of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Two functions for this enzyme have been reported: One is production of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] and the other is inactivation of 1alpha,25(OH)2D3. To elucidate other physiologic roles of CYP24 in vivo, we previously generated rats that constitutively express the CYP24 gene. These transgenic (Tg) rats developed unexpected phenotypes, such as low plasma levels of 24,25(OH)2D3, lipidemia, and albuminuria. In this study, we elucidated the mechanisms for inducing low plasma 24,25(OH)2D3 levels and bone loss. Tg rats excreted massive amounts of vitamin D binding protein (DBP), which coincided with the loss of albumin. In Tg rats, the renal expression pattern of megalin, which serves as an endocytotic receptor responsible for the reuptake of urinary proteins such as DBP and albumin, was identical to that of the wild-type rats. Excreted albumin appeared to compete for the binding and reabsorption of the DBP-25-hydroxyvitamin D3 [25(OH)D3] complex with megalin, resulting in a loss of 25(OH)D3 into the urine and subsequent reduction of plasma 24,25(OH)2D3. In this prominent rat model of nephritis, supplementation of 25(OH)D3 was effective in preventing bone loss in an early stage of renal insufficiency.

UR - http://www.scopus.com/inward/record.url?scp=0037389136&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037389136&partnerID=8YFLogxK

M3 - Article

VL - 17

SP - 737

EP - 739

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 6

ER -