Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes

Yoshiki Ohgo, Akito Hoshino, Tomoya Okamura, Hidehiro Uekusa, Daisuke Hashizume, Akira Ikezaki, Mikio Nakamura

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2] +, where axial ligands (L) are imidazole (Hlm) and tert-butylisocyanide (tBuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitale. As for the bis(Hlm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(Hlm) complexes. Since these complexes adopt the (dxy)2(d xz, dyz)3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dπ orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3eg-like orbitale. A fairly small substituent effect is understandable because the 3eg-like orbitale have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial Hlm is replaced by tBuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(Hlm) complexes. Since the bis(tBuNC) complexes adopt the (dxz, dyz)4(dxy)1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitale that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (dxz, dyz) 4(dxy)1 ground state should take place between the d xy and a2u-like orbital rather than between the d xy and a1u-like orbital, though the latter interaction is symmetry-allowed in saddled D2d complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the dxy orbital due to a smaller energy gap between the d xy and dπ orbitale. In fact, the energy levels of the dxy and dπ orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (dxy)2(d xz, dyz)3 ground state despite the coordination of tBuNC.

Original languageEnglish
Pages (from-to)8193-8207
Number of pages15
JournalInorganic Chemistry
Volume46
Issue number20
DOIs
Publication statusPublished - 2007 Oct 1

Fingerprint

Porphyrins
porphyrins
Carbon
Iron
Metals
Ground state
iron
orbitals
metals
carbon
Atoms
interactions
Paramagnetic resonance
Electrons
ground state
electron paramagnetic resonance
X ray crystallography
Chemical shift
atoms
Electron energy levels

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

Ohgo, Y., Hoshino, A., Okamura, T., Uekusa, H., Hashizume, D., Ikezaki, A., & Nakamura, M. (2007). Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes. Inorganic Chemistry, 46(20), 8193-8207. https://doi.org/10.1021/ic700827w

Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes. / Ohgo, Yoshiki; Hoshino, Akito; Okamura, Tomoya; Uekusa, Hidehiro; Hashizume, Daisuke; Ikezaki, Akira; Nakamura, Mikio.

In: Inorganic Chemistry, Vol. 46, No. 20, 01.10.2007, p. 8193-8207.

Research output: Contribution to journalArticle

Ohgo, Y, Hoshino, A, Okamura, T, Uekusa, H, Hashizume, D, Ikezaki, A & Nakamura, M 2007, 'Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes', Inorganic Chemistry, vol. 46, no. 20, pp. 8193-8207. https://doi.org/10.1021/ic700827w
Ohgo Y, Hoshino A, Okamura T, Uekusa H, Hashizume D, Ikezaki A et al. Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes. Inorganic Chemistry. 2007 Oct 1;46(20):8193-8207. https://doi.org/10.1021/ic700827w
Ohgo, Yoshiki ; Hoshino, Akito ; Okamura, Tomoya ; Uekusa, Hidehiro ; Hashizume, Daisuke ; Ikezaki, Akira ; Nakamura, Mikio. / Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes. In: Inorganic Chemistry. 2007 ; Vol. 46, No. 20. pp. 8193-8207.
@article{4b7a50a277e94ab6960771315cc5d5f0,
title = "Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes",
abstract = "Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2] +, where axial ligands (L) are imidazole (Hlm) and tert-butylisocyanide (tBuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitale. As for the bis(Hlm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(Hlm) complexes. Since these complexes adopt the (dxy)2(d xz, dyz)3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dπ orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3eg-like orbitale. A fairly small substituent effect is understandable because the 3eg-like orbitale have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial Hlm is replaced by tBuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(Hlm) complexes. Since the bis(tBuNC) complexes adopt the (dxz, dyz)4(dxy)1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitale that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (dxz, dyz) 4(dxy)1 ground state should take place between the d xy and a2u-like orbital rather than between the d xy and a1u-like orbital, though the latter interaction is symmetry-allowed in saddled D2d complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the dxy orbital due to a smaller energy gap between the d xy and dπ orbitale. In fact, the energy levels of the dxy and dπ orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (dxy)2(d xz, dyz)3 ground state despite the coordination of tBuNC.",
author = "Yoshiki Ohgo and Akito Hoshino and Tomoya Okamura and Hidehiro Uekusa and Daisuke Hashizume and Akira Ikezaki and Mikio Nakamura",
year = "2007",
month = "10",
day = "1",
doi = "10.1021/ic700827w",
language = "English",
volume = "46",
pages = "8193--8207",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "20",

}

TY - JOUR

T1 - Metal-porphyrin orbital interactions in highly saddled low-spin iron(iii) porphyrin complexes

AU - Ohgo, Yoshiki

AU - Hoshino, Akito

AU - Okamura, Tomoya

AU - Uekusa, Hidehiro

AU - Hashizume, Daisuke

AU - Ikezaki, Akira

AU - Nakamura, Mikio

PY - 2007/10/1

Y1 - 2007/10/1

N2 - Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2] +, where axial ligands (L) are imidazole (Hlm) and tert-butylisocyanide (tBuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitale. As for the bis(Hlm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(Hlm) complexes. Since these complexes adopt the (dxy)2(d xz, dyz)3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dπ orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3eg-like orbitale. A fairly small substituent effect is understandable because the 3eg-like orbitale have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial Hlm is replaced by tBuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(Hlm) complexes. Since the bis(tBuNC) complexes adopt the (dxz, dyz)4(dxy)1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitale that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (dxz, dyz) 4(dxy)1 ground state should take place between the d xy and a2u-like orbital rather than between the d xy and a1u-like orbital, though the latter interaction is symmetry-allowed in saddled D2d complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the dxy orbital due to a smaller energy gap between the d xy and dπ orbitale. In fact, the energy levels of the dxy and dπ orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (dxy)2(d xz, dyz)3 ground state despite the coordination of tBuNC.

AB - Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2] +, where axial ligands (L) are imidazole (Hlm) and tert-butylisocyanide (tBuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitale. As for the bis(Hlm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(Hlm) complexes. Since these complexes adopt the (dxy)2(d xz, dyz)3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dπ orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3eg-like orbitale. A fairly small substituent effect is understandable because the 3eg-like orbitale have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial Hlm is replaced by tBuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(Hlm) complexes. Since the bis(tBuNC) complexes adopt the (dxz, dyz)4(dxy)1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitale that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (dxz, dyz) 4(dxy)1 ground state should take place between the d xy and a2u-like orbital rather than between the d xy and a1u-like orbital, though the latter interaction is symmetry-allowed in saddled D2d complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the dxy orbital due to a smaller energy gap between the d xy and dπ orbitale. In fact, the energy levels of the dxy and dπ orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (dxy)2(d xz, dyz)3 ground state despite the coordination of tBuNC.

UR - http://www.scopus.com/inward/record.url?scp=35348914706&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35348914706&partnerID=8YFLogxK

U2 - 10.1021/ic700827w

DO - 10.1021/ic700827w

M3 - Article

VL - 46

SP - 8193

EP - 8207

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 20

ER -