Mode classification of combustion and propulsive performance of reflective shuttling detonation combustor

Masato Yamaguchi, Ken Matsuoka, Akira Kawasaki, Jiro Kasahara, Hiroaki Watanabe, Akiko Matsuo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)


Detonation combustors, such as a rotating detonation combustor and a pulse detonation combustor, have advantages in its higher thermal efficiency and possibility to configure smaller scale combustor than that of conventional internal combustion systems. In a previous study, we proposed a new detonation combustor named a reflective shuttling detonation combustor (RSDC) in which detonation waves propagate in opposite directions repeating reflection at side walls. In the present study, a rectangular combustor (53 × 45 × 5 mm) with non-premixed triplet injectors was used to clarify the effect of equivalence ratios and mass flow rates on combustion modes and propulsive performance. As a result, both detonation and deflagration modes were observed. These modes were classified into four types (Single, Double, Single strong single weak, and Deflagration modes) based on CH* images captured by a high-speed camera and a band-pass filter whose peak value is 430 nm. For mass flow rates and equivalence ratios, it is suggested that a normalized fill height h/λ, which varies depending on these parameters, affects wave number transition as a rotating detonation combustor. For propulsive performance, static pressure measured at the bottom of the combustion chamber was normalized with the theoretical value of a conventional isobaric combustor. The normalized pressure for detonation modes were lower than that of deflagration modes. This might be attributed to higher dynamic pressure caused by the wave propagation and/or insufficient combustion.

Original languageEnglish
Title of host publicationAIAA Scitech 2020 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105951
Publication statusPublished - 2020
EventAIAA Scitech Forum, 2020 - Orlando, United States
Duration: 2020 Jan 62020 Jan 10

Publication series

NameAIAA Scitech 2020 Forum
Volume1 PartF


ConferenceAIAA Scitech Forum, 2020
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Aerospace Engineering


Dive into the research topics of 'Mode classification of combustion and propulsive performance of reflective shuttling detonation combustor'. Together they form a unique fingerprint.

Cite this