Modeling of measurement-based quantum network coding on IBM Q experience devices

Poramet Pathumsoot, Takaaki Matsuo, Takahiko Satoh, Michal Hajdušek, Sujin Suwanna, Rodney van Meter

Research output: Contribution to journalArticlepeer-review

Abstract

Quantum network coding has been proposed to improve resource utilization to support distributed computation but has not yet been put in to practice. We investigate a particular implementation of quantum network coding using measurement-based quantum computation on IBM Q processors. We compare the performance of quantum network coding with entanglement swapping and entanglement distribution via linear cluster states. These protocols outperform quantum network coding in terms of the final Bell pair fidelities but are unsuitable for optimal resource utilization in complex networks with contention present. We demonstrate the suitability of noisy intermediate-scale quantum (NISQ) devices such as IBM Q for the study of quantum networks. We also identify the factors that limit the performance of quantum network coding on these processors and provide estimates or error rates required to boost the final Bell pair fidelities to a point where they can be used for generation of genuinely random cryptographic keys among other useful tasks. Surprisingly, the required error rates are only around a factor of 2 smaller than the current status and we expect they will be achieved in the near future.

Original languageEnglish
JournalUnknown Journal
Publication statusPublished - 2019 Oct 2

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Modeling of measurement-based quantum network coding on IBM Q experience devices'. Together they form a unique fingerprint.

Cite this