Molecular dynamics simulation of three-dimensional heterogeneous nucleation

Donguk Suh, Kenji Yasuoka

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Nanoparticle growth based on three-dimensional heterogeneous nucleation was simulated by classical molecular dynamics. To collectively observe the effects of the dimension of seeds and thermodynamic conditions, seed size and system supersaturation ratio were the factors that were examined to see if they influenced the nucleation rates. Two stages were found to exist within the system, where the first stage is from the seed growth and the second from homogeneous nucleation. The Yasuoka-Matsumoto method was used to calculate the rates. The homogeneous nucleation characteristics coincided with the classical nucleation theory, but heterogeneous nucleation showed an irregular form, which at the current state cannot not be fully understood. Kinetic analysis was also performed to calculate the critical nucleus size and better understand the seed growth characteristics. All in all, the seed effects were insignificant to the overall nucleation characteristics for this system.

Original languageEnglish
Title of host publicationASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791838921
DOIs
Publication statusPublished - 2011
EventASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011 - Honolulu, HI, United States
Duration: 2011 Mar 132011 Mar 17

Publication series

NameASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011

Other

OtherASME/JSME 2011 8th Thermal Engineering Joint Conference, AJTEC 2011
Country/TerritoryUnited States
CityHonolulu, HI
Period11/3/1311/3/17

ASJC Scopus subject areas

  • Energy Engineering and Power Technology

Fingerprint

Dive into the research topics of 'Molecular dynamics simulation of three-dimensional heterogeneous nucleation'. Together they form a unique fingerprint.

Cite this