Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability

Makoto Suzuki, Hikari Kirimoto, Kazuhiro Sugawara, Mineo Oyama, Sumio Yamada, Jyun'ichi Yamamoto, Atsuhiko Matsunaga, Michinari Fukuda, Hideaki Onishi

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10% reward, 30 trials contained 50% reward, and 30 trials contained 90% reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10% reward probability than for 90% reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90% reward probability than for 10% and 50% reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward probability.

Original languageEnglish
Article numbere90773
JournalPLoS One
Volume9
Issue number3
DOIs
Publication statusPublished - 2014 Mar 6

Fingerprint

Motor Cortex
Reward
Muscle
Muscles
muscles
agonists
antagonists
carpus
evoked potentials
Bioelectric potentials
Red Cross
Networks (circuits)
phalanges
gravity
volunteers
motor cortex
Reinforcement
Gravitation
hands
Motor Evoked Potentials

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)
  • Agricultural and Biological Sciences(all)

Cite this

Suzuki, M., Kirimoto, H., Sugawara, K., Oyama, M., Yamada, S., Yamamoto, J., ... Onishi, H. (2014). Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability. PLoS One, 9(3), [e90773]. https://doi.org/10.1371/journal.pone.0090773

Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability. / Suzuki, Makoto; Kirimoto, Hikari; Sugawara, Kazuhiro; Oyama, Mineo; Yamada, Sumio; Yamamoto, Jyun'ichi; Matsunaga, Atsuhiko; Fukuda, Michinari; Onishi, Hideaki.

In: PLoS One, Vol. 9, No. 3, e90773, 06.03.2014.

Research output: Contribution to journalArticle

Suzuki, M, Kirimoto, H, Sugawara, K, Oyama, M, Yamada, S, Yamamoto, J, Matsunaga, A, Fukuda, M & Onishi, H 2014, 'Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability', PLoS One, vol. 9, no. 3, e90773. https://doi.org/10.1371/journal.pone.0090773
Suzuki, Makoto ; Kirimoto, Hikari ; Sugawara, Kazuhiro ; Oyama, Mineo ; Yamada, Sumio ; Yamamoto, Jyun'ichi ; Matsunaga, Atsuhiko ; Fukuda, Michinari ; Onishi, Hideaki. / Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability. In: PLoS One. 2014 ; Vol. 9, No. 3.
@article{98e1afc9024d4abd915971f6579aa612,
title = "Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability",
abstract = "Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10{\%} reward, 30 trials contained 50{\%} reward, and 30 trials contained 90{\%} reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10{\%} reward probability than for 90{\%} reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90{\%} reward probability than for 10{\%} and 50{\%} reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward probability.",
author = "Makoto Suzuki and Hikari Kirimoto and Kazuhiro Sugawara and Mineo Oyama and Sumio Yamada and Jyun'ichi Yamamoto and Atsuhiko Matsunaga and Michinari Fukuda and Hideaki Onishi",
year = "2014",
month = "3",
day = "6",
doi = "10.1371/journal.pone.0090773",
language = "English",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Motor cortex-evoked activity in reciprocal muscles is modulated by reward probability

AU - Suzuki, Makoto

AU - Kirimoto, Hikari

AU - Sugawara, Kazuhiro

AU - Oyama, Mineo

AU - Yamada, Sumio

AU - Yamamoto, Jyun'ichi

AU - Matsunaga, Atsuhiko

AU - Fukuda, Michinari

AU - Onishi, Hideaki

PY - 2014/3/6

Y1 - 2014/3/6

N2 - Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10% reward, 30 trials contained 50% reward, and 30 trials contained 90% reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10% reward probability than for 90% reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90% reward probability than for 10% and 50% reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward probability.

AB - Horizontal intracortical projections for agonist and antagonist muscles exist in the primary motor cortex (M1), and reward may induce a reinforcement of transmission efficiency of intracortical circuits. We investigated reward-induced change in M1 excitability for agonist and antagonist muscles. Participants were 8 healthy volunteers. Probabilistic reward tasks comprised 3 conditions of 30 trials each: 30 trials contained 10% reward, 30 trials contained 50% reward, and 30 trials contained 90% reward. Each trial began with a cue (red fixation cross), followed by blue circle for 1 s. The subjects were instructed to perform wrist flexion and press a button with the dorsal aspect of middle finger phalanx as quickly as possible in response to disappearance of the blue circle without looking at their hand or the button. Two seconds after the button press, reward/non-reward stimulus was randomly presented for 2-s duration. The reward stimulus was a picture of Japanese 10-yen coin, and each subject received monetary reward at the end of experiment. Subjects were not informed of the reward probabilities. We delivered transcranial magnetic stimulation of the left M1 at the midpoint between center of gravities of agonist flexor carpi radialis (FCR) and antagonist extensor carpi radialis (ECR) muscles at 2 s after the red fixation cross and 1 s after the reward/non-reward stimuli. Relative motor evoked potential (MEP) amplitudes at 2 s after the red fixation cross were significantly higher for 10% reward probability than for 90% reward probability, whereas relative MEP amplitudes at 1 s after reward/non-reward stimuli were significantly higher for 90% reward probability than for 10% and 50% reward probabilities. These results implied that reward could affect the horizontal intracortical projections in M1 for agonist and antagonist muscles, and M1 excitability including the reward-related circuit before and after reward stimulus could be differently altered by reward probability.

UR - http://www.scopus.com/inward/record.url?scp=84897140719&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84897140719&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0090773

DO - 10.1371/journal.pone.0090773

M3 - Article

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 3

M1 - e90773

ER -