TY - JOUR
T1 - Mucin O-glycans facilitate symbiosynthesis to maintain gut immune homeostasis
AU - Yamada, Takahiro
AU - Hino, Shingo
AU - Iijima, Hideki
AU - Genda, Tomomi
AU - Aoki, Ryo
AU - Nagata, Ryuji
AU - Han, Ho
AU - Hirota, Masato
AU - Kinashi, Yusuke
AU - Oguchi, Hiroyuki
AU - Suda, Wataru
AU - Furusawa, Yukihiro
AU - Fujimura, Yumiko
AU - Kunisawa, Jun
AU - Hattori, Masahira
AU - Fukushima, Michihiro
AU - Morita, Tatsuya
AU - Hase, Koji
N1 - Publisher Copyright:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/5/30
Y1 - 2019/5/30
N2 - The dysbiosis of gut microbiota has been implicated in the pathogenesis of inflammatory bowel diseases (IBDs); however, the underlying mechanisms have not yet been elucidated. Heavily glycosylated mucin not only establishes a first-line barrier against pathogens, but also serves as a niche for microbial growth. We hypothesized that dysbiosis may cause abnormal mucin utilization and microbial metabolic dysfunction. To test this hypothesis, we analyzed short-chain fatty acids (SCFAs) and mucin components in the stool samples of 40 healthy subjects, 49 ulcerative colitis (UC) patients, and 44 Crohn's disease (CD) patients from Japan. The levels of n-butyrate were significantly lower in the stools of both the CD and UC patients than in those of the healthy subjects. Correlation analysis identified 7 bacterial species positively correlated with n-butyrate levels, among which the major n-butyrate producer, Faecalibacterium prausnitzii, was particularly underrepresented in CD patients, but not in UC patients. In UC patients, there were inverse correlations between mucin O-glycan levels and the production of SCFAs, such as n-butyrate, suggesting that mucin O-glycans act as an endogenous fermentation substrate for n-butyrate production. Indeed, mucin-fed rodents exhibited enhanced n-butyrate production, leading to the expansion of RORgt+Treg cells and IgA-producing cells in the colonic lamina propria. Importantly, the availability of mucin-associated O-glycans to the microbiota was significantly reduced in n-butyrate-deficient UC patients. Taken together, our findings highlight the biological significance of the symbiosynthesis pathway in the production of n-butyrate, which maintains gut immune homeostasis.
AB - The dysbiosis of gut microbiota has been implicated in the pathogenesis of inflammatory bowel diseases (IBDs); however, the underlying mechanisms have not yet been elucidated. Heavily glycosylated mucin not only establishes a first-line barrier against pathogens, but also serves as a niche for microbial growth. We hypothesized that dysbiosis may cause abnormal mucin utilization and microbial metabolic dysfunction. To test this hypothesis, we analyzed short-chain fatty acids (SCFAs) and mucin components in the stool samples of 40 healthy subjects, 49 ulcerative colitis (UC) patients, and 44 Crohn's disease (CD) patients from Japan. The levels of n-butyrate were significantly lower in the stools of both the CD and UC patients than in those of the healthy subjects. Correlation analysis identified 7 bacterial species positively correlated with n-butyrate levels, among which the major n-butyrate producer, Faecalibacterium prausnitzii, was particularly underrepresented in CD patients, but not in UC patients. In UC patients, there were inverse correlations between mucin O-glycan levels and the production of SCFAs, such as n-butyrate, suggesting that mucin O-glycans act as an endogenous fermentation substrate for n-butyrate production. Indeed, mucin-fed rodents exhibited enhanced n-butyrate production, leading to the expansion of RORgt+Treg cells and IgA-producing cells in the colonic lamina propria. Importantly, the availability of mucin-associated O-glycans to the microbiota was significantly reduced in n-butyrate-deficient UC patients. Taken together, our findings highlight the biological significance of the symbiosynthesis pathway in the production of n-butyrate, which maintains gut immune homeostasis.
UR - http://www.scopus.com/inward/record.url?scp=85093553282&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093553282&partnerID=8YFLogxK
U2 - 10.1101/655597
DO - 10.1101/655597
M3 - Article
AN - SCOPUS:85093553282
JO - Mathematical Social Sciences
JF - Mathematical Social Sciences
SN - 0165-4896
ER -