Neural Implicit Event Generator for Motion Tracking

Mana Masuda, Yusuke Sekikawa, Ryo Fujii, Hideo Saito

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present a novel framework of motion tracking from event data using implicit expression. Our framework uses pre-trained event generation MLP called the implicit event generator (IEG) and carries out motion tracking by updating its state (position and velocity) based on the difference between the observed event and generated event from the current state estimation. The difference is computed implicitly by the IEG. Unlike the conventional explicit approach, which requires dense computation to evaluate the difference, our implicit approach realizes the update of the efficient state directly from sparse event data. Our sparse algorithm is especially suitable for mobile robotics applications in which computational resources and battery life are limited. To verify the effectiveness of our method on real-world data, we applied it to the AR marker tracking application. We have confirmed that our framework works well in real-world environments in the presence of noise and background clutter.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Robotics and Automation, ICRA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2200-2206
Number of pages7
ISBN (Electronic)9781728196817
DOIs
Publication statusPublished - 2022
Event39th IEEE International Conference on Robotics and Automation, ICRA 2022 - Philadelphia, United States
Duration: 2022 May 232022 May 27

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference39th IEEE International Conference on Robotics and Automation, ICRA 2022
Country/TerritoryUnited States
CityPhiladelphia
Period22/5/2322/5/27

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Neural Implicit Event Generator for Motion Tracking'. Together they form a unique fingerprint.

Cite this