Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice

Hidenori Tabata, Kazunori Nakajima

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

The Reelin molecule plays a fundamental role in corticogenesis. After Reelin binds to its receptors, the Reelin signal is transduced through tyrosine phosphorylation of the intracellular adaptor protein disabled 1 (Dab1). The reelin-gene-deficient mouse, reeler, and Dab1-deficient mouse, yotari, show disrupted positioning of neurons. Several molecules have been identified recently as being involved in Reelin signaling, however, the biological function of Reelin during cortical plate development was still unknown. We observed the migrating behavior of neurons during development in Reelin-signal-deficient mice. To visualize the migrating neurons directly, we introduced green fluorescent protein (GFP)-expression vectors into the ventricular zone with an in utero electroporation system and allowed the embryos to develop in utero until they were analyzed. The result showed that the migrating cells in the mutants were morphologically indistinguishable from those of normal mice. At the stage when the GFP-expressing cells reached the marginal zone near the pial surface and began dendrite formation in normal mice, the GFP-positive cells were found at various deeper positions in the mutant cortex. They had the morphology of migrating cells extending leading processes toward the pial surface. By contrast, in the mutants these cells tended to stop migration along the borders of the internal plexiform zone, the irregular structure consisting mainly of dendrites in the mutant cortex. Postnatally, these neurons began to develop dendrites later than the cells in the normal cortex. During this process, some neurons above the internal plexiform zone extended and developed dendrites in the opposite direction into the internal plexiform zone. These results suggest that the abnormal positioning of neurons in the Reelin-signal-deficient mice is caused, at least in part, by abnormal formation of the internal plexiform zone in the mutant cortex.

Original languageEnglish
Pages (from-to)723-730
Number of pages8
JournalJournal of Neuroscience Research
Volume69
Issue number6
DOIs
Publication statusPublished - 2002 Sep 15
Externally publishedYes

Fingerprint

Dendrites
Neurons
Green Fluorescent Proteins
Neurologic Mutant Mice
Electroporation
Cerebral Cortex
Tyrosine
Embryonic Structures
Phosphorylation
Genes
Proteins

Keywords

  • Cortical lamination
  • In vivo gene transfer
  • Reeler
  • Yotari

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{1b2c3f7e64784537927747c25cc28799,
title = "Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice",
abstract = "The Reelin molecule plays a fundamental role in corticogenesis. After Reelin binds to its receptors, the Reelin signal is transduced through tyrosine phosphorylation of the intracellular adaptor protein disabled 1 (Dab1). The reelin-gene-deficient mouse, reeler, and Dab1-deficient mouse, yotari, show disrupted positioning of neurons. Several molecules have been identified recently as being involved in Reelin signaling, however, the biological function of Reelin during cortical plate development was still unknown. We observed the migrating behavior of neurons during development in Reelin-signal-deficient mice. To visualize the migrating neurons directly, we introduced green fluorescent protein (GFP)-expression vectors into the ventricular zone with an in utero electroporation system and allowed the embryos to develop in utero until they were analyzed. The result showed that the migrating cells in the mutants were morphologically indistinguishable from those of normal mice. At the stage when the GFP-expressing cells reached the marginal zone near the pial surface and began dendrite formation in normal mice, the GFP-positive cells were found at various deeper positions in the mutant cortex. They had the morphology of migrating cells extending leading processes toward the pial surface. By contrast, in the mutants these cells tended to stop migration along the borders of the internal plexiform zone, the irregular structure consisting mainly of dendrites in the mutant cortex. Postnatally, these neurons began to develop dendrites later than the cells in the normal cortex. During this process, some neurons above the internal plexiform zone extended and developed dendrites in the opposite direction into the internal plexiform zone. These results suggest that the abnormal positioning of neurons in the Reelin-signal-deficient mice is caused, at least in part, by abnormal formation of the internal plexiform zone in the mutant cortex.",
keywords = "Cortical lamination, In vivo gene transfer, Reeler, Yotari",
author = "Hidenori Tabata and Kazunori Nakajima",
year = "2002",
month = "9",
day = "15",
doi = "10.1002/jnr.10345",
language = "English",
volume = "69",
pages = "723--730",
journal = "Journal of Neuroscience Research",
issn = "0360-4012",
publisher = "Wiley-Liss Inc.",
number = "6",

}

TY - JOUR

T1 - Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice

AU - Tabata, Hidenori

AU - Nakajima, Kazunori

PY - 2002/9/15

Y1 - 2002/9/15

N2 - The Reelin molecule plays a fundamental role in corticogenesis. After Reelin binds to its receptors, the Reelin signal is transduced through tyrosine phosphorylation of the intracellular adaptor protein disabled 1 (Dab1). The reelin-gene-deficient mouse, reeler, and Dab1-deficient mouse, yotari, show disrupted positioning of neurons. Several molecules have been identified recently as being involved in Reelin signaling, however, the biological function of Reelin during cortical plate development was still unknown. We observed the migrating behavior of neurons during development in Reelin-signal-deficient mice. To visualize the migrating neurons directly, we introduced green fluorescent protein (GFP)-expression vectors into the ventricular zone with an in utero electroporation system and allowed the embryos to develop in utero until they were analyzed. The result showed that the migrating cells in the mutants were morphologically indistinguishable from those of normal mice. At the stage when the GFP-expressing cells reached the marginal zone near the pial surface and began dendrite formation in normal mice, the GFP-positive cells were found at various deeper positions in the mutant cortex. They had the morphology of migrating cells extending leading processes toward the pial surface. By contrast, in the mutants these cells tended to stop migration along the borders of the internal plexiform zone, the irregular structure consisting mainly of dendrites in the mutant cortex. Postnatally, these neurons began to develop dendrites later than the cells in the normal cortex. During this process, some neurons above the internal plexiform zone extended and developed dendrites in the opposite direction into the internal plexiform zone. These results suggest that the abnormal positioning of neurons in the Reelin-signal-deficient mice is caused, at least in part, by abnormal formation of the internal plexiform zone in the mutant cortex.

AB - The Reelin molecule plays a fundamental role in corticogenesis. After Reelin binds to its receptors, the Reelin signal is transduced through tyrosine phosphorylation of the intracellular adaptor protein disabled 1 (Dab1). The reelin-gene-deficient mouse, reeler, and Dab1-deficient mouse, yotari, show disrupted positioning of neurons. Several molecules have been identified recently as being involved in Reelin signaling, however, the biological function of Reelin during cortical plate development was still unknown. We observed the migrating behavior of neurons during development in Reelin-signal-deficient mice. To visualize the migrating neurons directly, we introduced green fluorescent protein (GFP)-expression vectors into the ventricular zone with an in utero electroporation system and allowed the embryos to develop in utero until they were analyzed. The result showed that the migrating cells in the mutants were morphologically indistinguishable from those of normal mice. At the stage when the GFP-expressing cells reached the marginal zone near the pial surface and began dendrite formation in normal mice, the GFP-positive cells were found at various deeper positions in the mutant cortex. They had the morphology of migrating cells extending leading processes toward the pial surface. By contrast, in the mutants these cells tended to stop migration along the borders of the internal plexiform zone, the irregular structure consisting mainly of dendrites in the mutant cortex. Postnatally, these neurons began to develop dendrites later than the cells in the normal cortex. During this process, some neurons above the internal plexiform zone extended and developed dendrites in the opposite direction into the internal plexiform zone. These results suggest that the abnormal positioning of neurons in the Reelin-signal-deficient mice is caused, at least in part, by abnormal formation of the internal plexiform zone in the mutant cortex.

KW - Cortical lamination

KW - In vivo gene transfer

KW - Reeler

KW - Yotari

UR - http://www.scopus.com/inward/record.url?scp=0037106146&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037106146&partnerID=8YFLogxK

U2 - 10.1002/jnr.10345

DO - 10.1002/jnr.10345

M3 - Article

VL - 69

SP - 723

EP - 730

JO - Journal of Neuroscience Research

JF - Journal of Neuroscience Research

SN - 0360-4012

IS - 6

ER -