Abstract
To develop graded-index plastic optical fibers (GI POFs) which can be utilized for transmissions at 850 nm, not only do molecular vibrational absorptions of the base polymeric materials need to be considered, but also the dopants used. In this study, chlorinated aromatic dopants were synthesized and their effects on the optical and thermal properties of poly(pentafluorostyrene), which has the low-loss window at 850 nm, were studied. The polymers doped with chlorinated dopants showed no absorption peak and retained the broad windows around the source wavelength. Furthermore, they showed higher glass transition temperatures when compared at similar refractive indices than the polymer doped with diphenyl sulfide, which is the most common dopant for acrylates and styrenes-based GI POFs. However, as the chlorine content per dopant molecule increased, the compatibility with the base material became worse and the doped polymer exhibited a higher attenuation due to an increment of light scattering.
Original language | English |
---|---|
Pages (from-to) | 782-786 |
Number of pages | 5 |
Journal | Optical Materials |
Volume | 36 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 Feb |
Keywords
- Attenuation
- Dopant
- GI POF
- Pentachlorophenol sodium salt
- Poly(pentafluorostyrene)
- Transmittance
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Computer Science(all)
- Atomic and Molecular Physics, and Optics
- Spectroscopy
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
- Electrical and Electronic Engineering