Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria.

Yutaka Shindo, Tomohiko Fujii, Hirokazu Komatsu, Daniel Citterio, Kohji Hotta, Koji Suzuki, Kotaro Oka

Research output: Contribution to journalArticle

Abstract

Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg(2+) concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg(2+), KMG-104, enabled us to compare the dynamics of Mg(2+) in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)-induced Mg(2+) mobilization from mitochondria to the cytosol was visualized. Although a FCCP-induced decrease in the Mg(2+) concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg(2+) and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP(+)). A gradual decrease in the Mg(2+) concentration in mitochondria was observed in response to MPP(+) in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg(2+) dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).

Original languageEnglish
JournalPLoS One
Volume6
Issue number8
Publication statusPublished - 2011
Externally publishedYes

Fingerprint

Mitochondria
Fluorescent Dyes
mitochondria
Visualization
cytosol
Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone
Cytosol
Parkinson disease
PC12 Cells
Neurons
Parkinson Disease
neurons
1-Methyl-4-phenylpyridinium
cells
cyanides
committees
Wistar Rats
Rats
Animals
Adenosine Triphosphate

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria. / Shindo, Yutaka; Fujii, Tomohiko; Komatsu, Hirokazu; Citterio, Daniel; Hotta, Kohji; Suzuki, Koji; Oka, Kotaro.

In: PLoS One, Vol. 6, No. 8, 2011.

Research output: Contribution to journalArticle

@article{395782febf3b4124ae684323486a25d2,
title = "Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria.",
abstract = "Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg(2+) concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg(2+), KMG-104, enabled us to compare the dynamics of Mg(2+) in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)-induced Mg(2+) mobilization from mitochondria to the cytosol was visualized. Although a FCCP-induced decrease in the Mg(2+) concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg(2+) and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP(+)). A gradual decrease in the Mg(2+) concentration in mitochondria was observed in response to MPP(+) in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg(2+) dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).",
author = "Yutaka Shindo and Tomohiko Fujii and Hirokazu Komatsu and Daniel Citterio and Kohji Hotta and Koji Suzuki and Kotaro Oka",
year = "2011",
language = "English",
volume = "6",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

TY - JOUR

T1 - Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria.

AU - Shindo, Yutaka

AU - Fujii, Tomohiko

AU - Komatsu, Hirokazu

AU - Citterio, Daniel

AU - Hotta, Kohji

AU - Suzuki, Koji

AU - Oka, Kotaro

PY - 2011

Y1 - 2011

N2 - Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg(2+) concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg(2+), KMG-104, enabled us to compare the dynamics of Mg(2+) in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)-induced Mg(2+) mobilization from mitochondria to the cytosol was visualized. Although a FCCP-induced decrease in the Mg(2+) concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg(2+) and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP(+)). A gradual decrease in the Mg(2+) concentration in mitochondria was observed in response to MPP(+) in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg(2+) dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).

AB - Mg(2+) plays important roles in numerous cellular functions. Mitochondria take part in intracellular Mg(2+) regulation and the Mg(2+) concentration in mitochondria affects the synthesis of ATP. However, there are few methods to observe Mg(2+) in mitochondria in intact cells. Here, we have developed a novel Mg(2+)-selective fluorescent probe, KMG-301, that is functional in mitochondria. This probe changes its fluorescence properties solely depending on the Mg(2+) concentration in mitochondria under physiologically normal conditions. Simultaneous measurements using this probe together with a probe for cytosolic Mg(2+), KMG-104, enabled us to compare the dynamics of Mg(2+) in the cytosol and in mitochondria. With this method, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)-induced Mg(2+) mobilization from mitochondria to the cytosol was visualized. Although a FCCP-induced decrease in the Mg(2+) concentration in mitochondria and an increase in the cytosol were observed both in differentiated PC12 cells and in hippocampal neurons, the time-courses of concentration changes varied with cell type. Moreover, the relationship between mitochondrial Mg(2+) and Parkinson's disease was analyzed in a cellular model of Parkinson's disease by using the 1-methyl-4-phenylpyridinium ion (MPP(+)). A gradual decrease in the Mg(2+) concentration in mitochondria was observed in response to MPP(+) in differentiated PC12 cells. These results indicate that KMG-301 is useful for investigating Mg(2+) dynamics in mitochondria. All animal procedures to obtain neurons from Wistar rats were approved by the ethical committee of Keio University (permit number is 09106-(1)).

UR - http://www.scopus.com/inward/record.url?scp=84868026692&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84868026692&partnerID=8YFLogxK

M3 - Article

C2 - 21858208

VL - 6

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 8

ER -