Abstract
Heartbeat is one of essential vital signs to assess our health condition. Noncontact heartbeat detection is thus receiving a lot of attention in recent years, which motivates many researchers to investigate heartbeat detection via a Doppler radar. In this paper, to detect heartbeat with a high accuracy, we propose a Doppler radar-based heartbeat detection method by the Viterbi algorithm with a fusion of Beat-Beat Interval (BBI) and deep learning-driven Branch Metrics (BM). The Viterbi algorithm is a technique to estimate a sequence with maximum likelihood by using a pre-defined metric, namely, a BM. In the proposed method, we combine two BMs defined based on (i) a difference between two adjacent BBIs and (ii) an output probability of a deep learning model that judges whether a peak is caused by heartbeat or not. We apply the VIterbi algorithm with the fusion of the two BMs to the signal obtained by some signal processing. We experimentally confirmed that our method performed heartbeat detection with small Root Mean Squared Error (RMSE) between the estimated and actual BBIs.
Original language | English |
---|---|
Pages (from-to) | 8308-8312 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 2021 Jun 6 → 2021 Jun 11 |
Keywords
- Deep learning
- Doppler radar
- Heartbeat detection
- Vital sign detection
- Viterbi algorithm
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering