Abstract
We theoretically investigate strong-coupling properties of an ultracold Fermi gas in the BCS-BEC crossover regime in the nonequilibrium steady state, being coupled with two fermion baths. By developing a nonequilibrium strong-coupling theory based on the combined T-matrix approximation with the Keldysh Green's function technique, we show that the chemical potential bias applied by the two baths gives rise to the anomalous enhancement of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing fluctuations (although the system has no spin imbalance), resulting in the re-entrant behavior of the nonequilibrium superfluid phase transition in the Bardeen-Cooper-Schrieffer unitary regime. These pairing fluctuations are also found to anomalously enhance the pseudogap phenomenon. Since various nonequilibrium phenomena have recently been measured in ultracold Fermi gases, our nonequilibrium strong-coupling theory would be useful to catch up with this experimental development in this research field.
Original language | English |
---|---|
Article number | 013602 |
Journal | Physical Review A |
Volume | 101 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 Jan 7 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics