Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models.

Hikaru Morisue, Morio Matsumoto, Kazuhiro Chiba, Hideo Matsumoto, Yoshiaki Toyama, Mamoru Aizawa, Nobuyuki Kanzawa, Takahiro J. Fujimi, Hiroshi Uchida, Isao Okada

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We have successfully synthesized hydroxyapatite fibers via a homogenous precipitation method. Using these hydroxyapatite fibers, we have produced the apatite fiber scaffolds (AFS) with well-controlled pore sizes (porosity above 95%). The AFS is relatively simple to synthesize, and its porosity and pore size are controllable. The usefulness of AFS as a scaffold for bone regeneration was evaluated by (1) seeding and culturing cells in the AFS in vitro, (2) implanting the AFS seeded with cells inside the subcutaneous tissue of mice. The AFS had biocompatibility to support cell adhesion, proliferation, and differentiation. Ectopic bone formation could be formed in the AFS at 12 weeks after implantation into the subcutaneous tissue. Because of its high interpore connection, pore diameters, and porosity, it was believed that AFS was an effective scaffold that provided a three-dimensional cell culture environment. In both in vitro and in vivo environments, the more porous AFS was more advantageous in cell proliferation, cell adhesion, proliferating capacity, robust cell differentiation, ultimately inducing bone ingrowth inside the scaffolds.

Original languageEnglish
Pages (from-to)811-818
Number of pages8
JournalJournal of biomedical materials research. Part A
Volume90
Issue number3
DOIs
Publication statusPublished - 2009 Sep 1

    Fingerprint

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Cite this