TY - JOUR
T1 - Novel MR imaging method - MAVRIC - for metal artifact suppression after joint replacement in musculoskeletal tumor patients
AU - Susa, Michiro
AU - Oguro, Sota
AU - Kikuta, Kazutaka
AU - Nishimoto, Kazumasa
AU - Horiuchi, Keisuke
AU - Jinzaki, Masahiro
AU - Nakamura, Masaya
AU - Matsumoto, Morio
AU - Chiba, Kazuhiro
AU - Morioka, Hideo
N1 - Publisher Copyright:
© 2015 Susa et al.
PY - 2015/12/4
Y1 - 2015/12/4
N2 - Background: Standard imaging modality for the follow-up after prosthetic replacements for musculoskeletal tumor patients has been conventional radiography. This technique is effective in detecting subtle changes in bone adjacent to metal implants, but in many cases, radiographs do not lead to definitive diagnosis of postoperative adverse events such as acute infection, local recurrence of soft tissue tumor or soft tissue local recurrence of osseous sarcoma. Conventional MRI sequences have not been effective due to metal artifacts. In this study, we tried to elucidate the effectiveness of metal artifact suppression using novel sequence, multiacquisition variable-resonance image combination (MAVRIC), after musculoskeletal tumor surgeries. Methods: We retrospectively analyzed 5 cases of malignant bone and soft tissue sarcoma patients who were reconstructed with metal prosthesis after wide resection of tumors. Images obtained using MAVRIC and short tau inversion recovery (STIR) were compared side by side. The paired MAVRIC and STIR images were qualitatively compared independently by two specialists for 4 parameters: visualization of bone - implant interface, visualization of surrounding soft tissues, image blurring, and overall image quality. Quantitatively, paired images were reviewed to identify the slice where the metal artifact was maximal, and a region of interest encompassing the implant and surrounding artifact was drawn using Advantage Workstation (GE Healthcare, Japan). Results: There were no local recurrences that were detected. By utilizing MAVRIC, visualization of the bone - implant interface and visualization of the surrounding soft tissue were significantly improved in MAVRIC compared to STIR. Although blurring was worse on the MAVRIC acquisitions, the overall image quality was still better on MAVRIC. Quantitatively, the area of metal artifact measured using MAVRIC was markedly less compared to STIR (61.4 cm2 vs 135.9 cm2). Conclusion: Despite the relatively small number of cases in the present study, our observation strongly suggests that MAVRIC is able to improve the quality of images by decreasing the artifact caused by endoprosthesis, frequently utilized in reconstruction of musculoskeletal tumor patients. Further installments of conventional imaging sequences with the addition of gadolinium - enhancement will enable increased accuracy in diagnosing local recurrences of sarcoma patients.
AB - Background: Standard imaging modality for the follow-up after prosthetic replacements for musculoskeletal tumor patients has been conventional radiography. This technique is effective in detecting subtle changes in bone adjacent to metal implants, but in many cases, radiographs do not lead to definitive diagnosis of postoperative adverse events such as acute infection, local recurrence of soft tissue tumor or soft tissue local recurrence of osseous sarcoma. Conventional MRI sequences have not been effective due to metal artifacts. In this study, we tried to elucidate the effectiveness of metal artifact suppression using novel sequence, multiacquisition variable-resonance image combination (MAVRIC), after musculoskeletal tumor surgeries. Methods: We retrospectively analyzed 5 cases of malignant bone and soft tissue sarcoma patients who were reconstructed with metal prosthesis after wide resection of tumors. Images obtained using MAVRIC and short tau inversion recovery (STIR) were compared side by side. The paired MAVRIC and STIR images were qualitatively compared independently by two specialists for 4 parameters: visualization of bone - implant interface, visualization of surrounding soft tissues, image blurring, and overall image quality. Quantitatively, paired images were reviewed to identify the slice where the metal artifact was maximal, and a region of interest encompassing the implant and surrounding artifact was drawn using Advantage Workstation (GE Healthcare, Japan). Results: There were no local recurrences that were detected. By utilizing MAVRIC, visualization of the bone - implant interface and visualization of the surrounding soft tissue were significantly improved in MAVRIC compared to STIR. Although blurring was worse on the MAVRIC acquisitions, the overall image quality was still better on MAVRIC. Quantitatively, the area of metal artifact measured using MAVRIC was markedly less compared to STIR (61.4 cm2 vs 135.9 cm2). Conclusion: Despite the relatively small number of cases in the present study, our observation strongly suggests that MAVRIC is able to improve the quality of images by decreasing the artifact caused by endoprosthesis, frequently utilized in reconstruction of musculoskeletal tumor patients. Further installments of conventional imaging sequences with the addition of gadolinium - enhancement will enable increased accuracy in diagnosing local recurrences of sarcoma patients.
KW - MAVRIC
KW - MRI
KW - Metal artifact
UR - http://www.scopus.com/inward/record.url?scp=84949201393&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949201393&partnerID=8YFLogxK
U2 - 10.1186/s12891-015-0838-1
DO - 10.1186/s12891-015-0838-1
M3 - Article
C2 - 26637412
AN - SCOPUS:84949201393
SN - 1471-2474
VL - 16
JO - BMC Musculoskeletal Disorders
JF - BMC Musculoskeletal Disorders
IS - 1
M1 - 377
ER -