Novel mutations in thiazide-sensitive Na-Cl cotransporter gene of patients with Gitelman's syndrome

Toshiaki Monkawa, Isao Kurihara, Kazuo Kobayashi, Matsuhiko Hayashi, Takao Saruta

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide- sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.

Original languageEnglish
Pages (from-to)65-70
Number of pages6
JournalJournal of the American Society of Nephrology
Volume11
Issue number1
Publication statusPublished - 2000 Jan

Fingerprint

Gitelman Syndrome
Mutation
Genes
Missense Mutation
Alleles
thiazide receptor
Alkalosis
Hypokalemia
Phenylalanine
Codon
Haplotypes
Siblings
Exons
Nucleotides
Parents
Mothers

ASJC Scopus subject areas

  • Nephrology

Cite this

Novel mutations in thiazide-sensitive Na-Cl cotransporter gene of patients with Gitelman's syndrome. / Monkawa, Toshiaki; Kurihara, Isao; Kobayashi, Kazuo; Hayashi, Matsuhiko; Saruta, Takao.

In: Journal of the American Society of Nephrology, Vol. 11, No. 1, 01.2000, p. 65-70.

Research output: Contribution to journalArticle

@article{da178becb6db4ec99969d78b19276b68,
title = "Novel mutations in thiazide-sensitive Na-Cl cotransporter gene of patients with Gitelman's syndrome",
abstract = "Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide- sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.",
author = "Toshiaki Monkawa and Isao Kurihara and Kazuo Kobayashi and Matsuhiko Hayashi and Takao Saruta",
year = "2000",
month = "1",
language = "English",
volume = "11",
pages = "65--70",
journal = "Journal of the American Society of Nephrology : JASN",
issn = "1046-6673",
publisher = "American Society of Nephrology",
number = "1",

}

TY - JOUR

T1 - Novel mutations in thiazide-sensitive Na-Cl cotransporter gene of patients with Gitelman's syndrome

AU - Monkawa, Toshiaki

AU - Kurihara, Isao

AU - Kobayashi, Kazuo

AU - Hayashi, Matsuhiko

AU - Saruta, Takao

PY - 2000/1

Y1 - 2000/1

N2 - Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide- sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.

AB - Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide- sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.

UR - http://www.scopus.com/inward/record.url?scp=0033982893&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033982893&partnerID=8YFLogxK

M3 - Article

VL - 11

SP - 65

EP - 70

JO - Journal of the American Society of Nephrology : JASN

JF - Journal of the American Society of Nephrology : JASN

SN - 1046-6673

IS - 1

ER -