Observation and theoretical calculations of voltage-induced large magnetocapacitance beyond 330% in MgO-based magnetic tunnel junctions

Kentaro Ogata, Yusuke Nakayama, Gang Xiao, Hideo Kaiju

Research output: Contribution to journalArticlepeer-review

Abstract

Magnetic tunnel junctions (MTJs) in the field of spintronics have received enormous attention owing to their fascinating spin phenomena for fundamental physics and potential applications. MTJs exhibit a large tunnel magnetoresistance (TMR) at room temperature. However, TMR depends strongly on the bias voltage, which reduces the magnitude of TMR. On the other hand, tunnel magnetocapacitance (TMC), which has also been observed in MTJs, can be increased when subjecting to a biasing voltage, thus exhibiting one of the most interesting spin phenomena. Here we report a large voltage-induced TMC beyond 330% in MgO-based MTJs, which is the largest value ever reported for MTJs. The voltage dependence and frequency characteristics of TMC can be explained by the newly proposed Debye-Fröhlich model using Zhang-sigmoid theory, parabolic barrier approximation, and spin-dependent drift diffusion model. Moreover, we predict that the voltage-induced TMC ratio could reach over 3000% in MTJs. It is a reality now that MTJs can be used as capacitors that are small in size, broadly ranged in frequencies and controllable by a voltage. Our theoretical and experimental findings provide a deeper understanding on the exact mechanism of voltage-induced AC spin transports in spintronic devices. Our research may open new avenues to the development of spintronics applications, such as highly sensitive magnetic sensors, high performance non-volatile memories, multi-functional spin logic devices, voltage controlled electronic components, and energy storage devices.

Original languageEnglish
Article number13807
JournalScientific reports
Volume11
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Observation and theoretical calculations of voltage-induced large magnetocapacitance beyond 330% in MgO-based magnetic tunnel junctions'. Together they form a unique fingerprint.

Cite this