Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models

Nobuhiro Moteki, Tatsuhiro Mori, Hitoshi Matsui, Sho Ohata

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Quantitative simulation of an aerosol’s lifecycle by regional-scale and global-scale atmospheric models is mandatory for unbiased analysis and prediction of aerosol radiative forcing and climate change. Globally, aerosol deposition is dominated by the rainout process, which is mostly triggered by activation of aerosols to liquid droplets in supersaturated domains of precipitating clouds. However, the actual environmental supersaturation value that aerosols experience in precipitating clouds is difficult for models to predict, and it has never been constrained by observations; as a result, there is large uncertainty in atmospheric aerosol simulations. Here, by a particle-tracer analysis of 37 rainfall events in East Asia, near the largest source region of anthropogenic aerosols in the northern hemisphere, we observed that the environmental supersaturation actually experienced by the removed aerosols in precipitating clouds averaged 0.08 ± 0.03% and ranged from 0.03 to 0.2%. Simulations by a mixing-state-resolved global aerosol model showed that the simulated long-range transport efficiency and global atmospheric burden of black carbon aerosols can be changed by a factor of two or three as a result of a change in the environmental supersaturation in precipitating clouds within just 0.08 ± 0.03%. This result is attributable to the fact that the sensitivity of an aerosol’s rainout efficiency to environmental supersaturation is higher for the less-aged black carbon concentrated near source regions. Our results suggest that observational constraints of environmental supersaturation in precipitating clouds, particularly near source regions, are of fundamental importance for accurate simulation of the atmospheric burden of black carbon and other aerosols.

Original languageEnglish
Article number6
Journalnpj Climate and Atmospheric Science
Volume2
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1
Externally publishedYes

ASJC Scopus subject areas

  • Atmospheric Science
  • Global and Planetary Change
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Observational constraint of in-cloud supersaturation for simulations of aerosol rainout in atmospheric models'. Together they form a unique fingerprint.

Cite this