Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices

Miki Kamikawatoko Omoto, Hidemasa Torii, Sachiko Masui, Masahiko Ayaki, Kazuo Tsubota, Kazuno Negishi

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This study compared the axial length (AL), central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), mean anterior corneal radius of curvature (Rm), and postoperative refractive outcomes obtained from two different swept-source optical coherence biometers, the ARGOS (Movu, Nagoya, Japan), which uses the segmental refractive index for each segment, and the IOLMaster 700 (Carl Zeiss Meditec, Jena, Germany), which uses an equivalent refractive index for the entire eye. One hundred and six eyes of 106 patients with cataracts were included. The refractive outcomes using the Barrett Universal II, Haigis, Hoffer Q, and SRK/T formulas were evaluated. The mean AL, CCT, ACD, and Rm differed significantly (P < 0.001) with the IOLMaster 700 (25.22 mm, 559 µm, 3.23 mm, and 7.69 mm) compared with the ARGOS (25.14 mm, 533 µm, 3.33 mm, and 7.66 mm). The mean LTs did not differ significantly. The percentages of eyes within ±0.50 and ±1.00 diopter of the predicted refraction did not differ significantly (P > 0.05). The accuracy of the intraocular lens power calculations was clinically acceptable with both biometers, although the ocular biometry using these two biometers exhibited certain differences.

Original languageEnglish
Article number6557
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices'. Together they form a unique fingerprint.

  • Cite this