On the pagenumber of complete bipartite graphs

Hikoe Enomoto, Tomoki Nakamigawa, Katsuhiro Ota

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

The pagenumberp(G) of a graphGis defined as the smallestnsuch thatGcan be embedded in a book withnpages. We give an upper bound for the page-number of the complete bipartite graphKm,n. Among other things, we provep(Kn,n)≤⌊2n/3⌋+1 andp(K⌊n2/4⌋,n)≤n-1. We also give an asymptotic result: min{m:p(Km,n)=n}=n2/4+O(n7/4).

Original languageEnglish
Pages (from-to)111-120
Number of pages10
JournalJournal of Combinatorial Theory. Series B
Volume71
Issue number1
DOIs
Publication statusPublished - 1997 Sep

Fingerprint

Complete Bipartite Graph
Thing
Upper bound

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

On the pagenumber of complete bipartite graphs. / Enomoto, Hikoe; Nakamigawa, Tomoki; Ota, Katsuhiro.

In: Journal of Combinatorial Theory. Series B, Vol. 71, No. 1, 09.1997, p. 111-120.

Research output: Contribution to journalArticle

Enomoto, Hikoe ; Nakamigawa, Tomoki ; Ota, Katsuhiro. / On the pagenumber of complete bipartite graphs. In: Journal of Combinatorial Theory. Series B. 1997 ; Vol. 71, No. 1. pp. 111-120.
@article{b602a68a6710488a8df397a5628a6cae,
title = "On the pagenumber of complete bipartite graphs",
abstract = "The pagenumberp(G) of a graphGis defined as the smallestnsuch thatGcan be embedded in a book withnpages. We give an upper bound for the page-number of the complete bipartite graphKm,n. Among other things, we provep(Kn,n)≤⌊2n/3⌋+1 andp(K⌊n2/4⌋,n)≤n-1. We also give an asymptotic result: min{m:p(Km,n)=n}=n2/4+O(n7/4).",
author = "Hikoe Enomoto and Tomoki Nakamigawa and Katsuhiro Ota",
year = "1997",
month = "9",
doi = "10.1006/jctb.1997.1773",
language = "English",
volume = "71",
pages = "111--120",
journal = "Journal of Combinatorial Theory. Series B",
issn = "0095-8956",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - On the pagenumber of complete bipartite graphs

AU - Enomoto, Hikoe

AU - Nakamigawa, Tomoki

AU - Ota, Katsuhiro

PY - 1997/9

Y1 - 1997/9

N2 - The pagenumberp(G) of a graphGis defined as the smallestnsuch thatGcan be embedded in a book withnpages. We give an upper bound for the page-number of the complete bipartite graphKm,n. Among other things, we provep(Kn,n)≤⌊2n/3⌋+1 andp(K⌊n2/4⌋,n)≤n-1. We also give an asymptotic result: min{m:p(Km,n)=n}=n2/4+O(n7/4).

AB - The pagenumberp(G) of a graphGis defined as the smallestnsuch thatGcan be embedded in a book withnpages. We give an upper bound for the page-number of the complete bipartite graphKm,n. Among other things, we provep(Kn,n)≤⌊2n/3⌋+1 andp(K⌊n2/4⌋,n)≤n-1. We also give an asymptotic result: min{m:p(Km,n)=n}=n2/4+O(n7/4).

UR - http://www.scopus.com/inward/record.url?scp=0031234619&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031234619&partnerID=8YFLogxK

U2 - 10.1006/jctb.1997.1773

DO - 10.1006/jctb.1997.1773

M3 - Article

VL - 71

SP - 111

EP - 120

JO - Journal of Combinatorial Theory. Series B

JF - Journal of Combinatorial Theory. Series B

SN - 0095-8956

IS - 1

ER -