On the structure of Milnor K-groups of certain complete discrete valuation fields

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

For a typical example of a complete discrete valuation field K of type II in the sense of [12], we determine the graded quotients gri K2(K) for all i > 0. In the Appendix, we describe the Milnor K-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.

Original languageEnglish
Pages (from-to)377-401
Number of pages25
JournalJournal de Theorie des Nombres de Bordeaux
Volume16
Issue number2
DOIs
Publication statusPublished - 2004
Externally publishedYes

Fingerprint

K-group
Local Ring
Valuation
Cohomology
Quotient
Module

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

On the structure of Milnor K-groups of certain complete discrete valuation fields. / Kurihara, Masato.

In: Journal de Theorie des Nombres de Bordeaux, Vol. 16, No. 2, 2004, p. 377-401.

Research output: Contribution to journalArticle

@article{87e6054c8a3843358bbabd10ab9a6bac,
title = "On the structure of Milnor K-groups of certain complete discrete valuation fields",
abstract = "For a typical example of a complete discrete valuation field K of type II in the sense of [12], we determine the graded quotients gri K2(K) for all i > 0. In the Appendix, we describe the Milnor K-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.",
author = "Masato Kurihara",
year = "2004",
doi = "10.5802/jtnb.452",
language = "English",
volume = "16",
pages = "377--401",
journal = "Journal de Theorie des Nombres de Bordeaux",
issn = "1246-7405",
publisher = "Universite de Bordeaux III (Michel de Montaigne)",
number = "2",

}

TY - JOUR

T1 - On the structure of Milnor K-groups of certain complete discrete valuation fields

AU - Kurihara, Masato

PY - 2004

Y1 - 2004

N2 - For a typical example of a complete discrete valuation field K of type II in the sense of [12], we determine the graded quotients gri K2(K) for all i > 0. In the Appendix, we describe the Milnor K-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.

AB - For a typical example of a complete discrete valuation field K of type II in the sense of [12], we determine the graded quotients gri K2(K) for all i > 0. In the Appendix, we describe the Milnor K-groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.

UR - http://www.scopus.com/inward/record.url?scp=85010022058&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85010022058&partnerID=8YFLogxK

U2 - 10.5802/jtnb.452

DO - 10.5802/jtnb.452

M3 - Article

AN - SCOPUS:85010022058

VL - 16

SP - 377

EP - 401

JO - Journal de Theorie des Nombres de Bordeaux

JF - Journal de Theorie des Nombres de Bordeaux

SN - 1246-7405

IS - 2

ER -