Ontogeny and Multipotency of Neural Crest-Derived Stem Cells in Mouse Bone Marrow, Dorsal Root Ganglia, and Whisker Pad

Narihito Nagoshi, Shinsuke Shibata, Yoshiaki Kubota, Masaya Nakamura, Yasuo Nagai, Etsuko Satoh, Satoru Morikawa, Yohei Okada, Yo Mabuchi, Hiroyuki Katoh, Seiji Okada, Keiichi Fukuda, Toshio Suda, Yumi Matsuzaki, Yoshiaki Toyama, Hideyuki Okano

Research output: Contribution to journalArticle

255 Citations (Scopus)

Abstract

Although recent reports have described multipotent, self-renewing, neural crest-derived stem cells (NCSCs), the NCSCs in various adult rodent tissues have not been well characterized or compared. Here we identified NCSCs in the bone marrow (BM), dorsal root ganglia, and whisker pad and prospectively isolated them from adult transgenic mice encoding neural crest-specific P0-Cre/Floxed-EGFP and Wnt1-Cre/Floxed-EGFP. Cultured EGFP-positive cells formed neurosphere-like structures that expressed NCSC genes and could differentiate into neurons, glial cells, and myofibroblasts, but the frequency of the cell types was tissue source dependent. Interestingly, we observed NCSCs in the aorta-gonad-mesonephros region, circulating blood, and liver at the embryonic stage, suggesting that NCSCs migrate through the bloodstream to the BM and providing an explanation for how neural cells are generated from the BM. The identification of NCSCs in accessible adult tissue provides a new potential source for autologous cell therapy after nerve injury or disease.

Original languageEnglish
Pages (from-to)392-403
Number of pages12
JournalCell stem cell
Volume2
Issue number4
DOIs
Publication statusPublished - 2008 Apr 10

    Fingerprint

Keywords

  • STEMCELL

ASJC Scopus subject areas

  • Molecular Medicine
  • Genetics
  • Cell Biology

Cite this